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On The Algebraic Representation 
of Causality 

Giving Mathematical Expression 
to Philosophical Decisions 

Roy Lisker 
 

I. Introduction 
  It is always the case when a causal framework is introduced 

into the descriptions of the natural sciences that a  philosophical 

analysis,  

( sometimes a decision on one side or the other of a traditional 

philosophical problem) ,  is being translated into a mathematical 

representation. Ideally this will be quantitative, although this is 

not always necessary.  For example, the teleological arguments  

coming from  the 2-fold Darwinian mechanisms of adaptation and 

natural selection - whenever it is argued that certain structures are 



present in a living organism because   they enhance ( or once did 

enhance) survival - are not strictly quantitative. In general 

however, these suggest a formal dialectic which can readily  be 

given mathematical form. Examples are the morphological 

transformation schemes of d’Arcy Thompson,  the epigenetic 

landscapes of C.H. Waddington, and the modeling methods  of  

Catastrophe Theory,  

 The philosophical analysis clarifies  the causal concept , the 

philosophical decision selects among various hypotheses and 

classical ideological positions,  while the mathematical 

representation translates  the conceptual foundations into 

symbolic, functional or schematic forms . These may now take on a 

life of their own, with no further appeal to their philosophical 

origins.  

 One of the real strengths of mathematics is  that it is free of 

any attachment to its motivating concerns. The Theory of 

Probability originated in the desire to predict the outcomes of card 

games and other types of gambling; yet today’s probabilists are not 

obliged to take an interest in gambling , or even know how to play 

cards. 

 In the same way, the most rudimentary causal schemes are 

based on a primitive “before and after” relationship. These lead in 

a natural fashion  to the study of totally and partially ordered sets:  

lattices, ordinals and order types. These can  be studied quite apart 

from any application to causal structures, or may even suggest other 

possibilities, ( such as those present in J.L. Borges famous story : 

“The Garden of the Forking Paths”) , for causation that may 

eventually be applicable to natural phenomena.  



 The paradigm 1   for all such procedures for the translation of 

causal notions into mathematics  is the  Quantum Theory. Only a 

partial list can be given of all of the mathematical structures which 

have emerged from the fundamental  insight that energy is emitted 

in discrete particles or quanta:  
(1)  Heisenberg’s Matrices  
(2)  Schrödinger’s Wave Equation  
(3)  Dirac’s Bra-Ket Formalism  
(4)  von Neumann’s Operator  Algebras 
(5)  Feynman’s Amplitudes; Diagrams;  
Integral  
(6)  Jauch-Piron Propositional  Lattices 
(7)  Bohm’s Hidden Variables 
(8)  Irving Segal’s Jordan Algebras 
(9)  Mackey’s Measure Spaces 
(10)  Reichenbach’s 3-valued logic  
(11)  Popper’s Scatter  Ensembles 
(12)  Gudder’s Non-Standard Arithmetics 

 In this paper we will spend some time examining the first 4 of 

these, with occasional  references to the others. Yet  even in those 

sciences which are not readily quantifiable: Psychology, 

Economics, Sociology, Anthropology,  Journalism, the so-called 

“human sciences” , one can trace the development of this process 

 It is evident for example in  Geology, which possesses  a 

conflict as  inherent to its  character as  a Kantian antinomy , 
                                            
1 Thomas Kuhn has forever altered the meaning of the word “paradigm”.  In our usage 
however we adhere to the older, more traditional uses of the word as defined in the 
following dictionary references: 
 (1)  paradigm...pattern, example...serving as a pattern or example 

-The Barnhart Dictionary of Etymology  H.W. Wilson 1988 
 (2)  paradigm... An example; a pattern followed; a typical example; an epitome... 
paradigm case   : a case or instance to be regarded as representative or typical. 

-The New Shorter Oxford Dictionary, Vol.2 , Clarendon Press 1993 ) 



between Uniformitarianism and Catastrophism. It is present in the  

stimulating  controversies of Biology, those surrounding the 

mechanisms of Evolution, those challenging the authenticity of 

the fossil record ( Paleontology ) , those which debate the relative 

roles of Nature vs. Nurture . Cosmology has  its exotic mix of great 

explosions ,  inflationary scenarios , a bushelful of solution spaces 

for Einstein’s field equations , and   homogeneity and isotropy 

principles.  

 In the writing of History  one uncovers every species of 

methodological dilemma: observer/ observed , determinism vs. free 

will , teleology vs. chaos , gradualist/catastrophist synchronic vs. 

diachronic perspectives , objectivity/ subjectivity, community 

versus the individual versus the idea  as historical determinants . 

Indeed, considered as a science, history is so forbiddingly  difficult 

that one imagines that only the most disciplined and gifted 

scholars would dare to enter the field; which is why one is always 

making the sad discovery  that most historians are little more than 

mediocre jingoists, vaunting monarchy, war, “great man” theories , 

“imperial glory” delusions , tabloid  psychologism and so on. 2 Yet 

good or bad, a historian must be first and foremost practice 

competent  philosophizing  on  the mechanisms of historical 

causation. All the same , unless he is a Marxist  or at least some kind 

of Hegelian, the translation of his framework of historical 

causation into logical , algebraic or functional schemes, cannot 

easily be envisaged .   

 For  most of the  human sciences  mathematical 

representations of causality cannot advance beyond a surface  level, 

even though the schemes  that do emerge may be very complex: 
                                            
2We hasten to exclude from this  demonization such names as Herodotus, Thucydides , Ibn 
Khaldun , Fernand Braudel,  Simon Schama , H. R.Trevor-Roper , Burchart, Arthur Symons,  
and many others.  



Keynesian economics, game theory, glottochronology, the lattice 

structure of the hominid tree, the kinship structures of organized 

societies around the world      

  By making  a close examination of the traditional 

interpretations of causality in different scientific fields  one 

quickly discovers that  many possibilities for mathematical 

modeling of causal schemes,  consonant  with standard  

philosophical preferences ,  are often overlooked  . An even more 

controversial finding is  that the ideal of causality which is 

incorporated into the conceptual framework of a certain science may 

not  correspond to  the  assumptions about causality  actually 

employed  in the daily  practice of that science  .    

 A fundamental idea  underlies everything  in this essay : a 

certain kind of  philosophical perspective on  causation leads to a 

certain kind of mathematics. Different philosophical positions 

lead to different mathematics. In every philosophical system for  

causation that is rich enough to serve as the foundation for some 

natural science one generally finds an abundance of equivalent 

mathematical representations: quantum theory being , once again, 

the paradigm .  In specific practical applications  these may  reduce 

to algorithms for predicting the future from the present.  Thus , in 

the elucidation of causal structure, mathematics plays an 

intermediary role between philosophy and observation. Most 

significantly it rarely, if in fact it ever does,  arise from the 

uninterpreted data of observation.  

II. Causal Function Algebras 
    The construction of  a Causal  Algebra of functions , 

algorithms and/or operators is  the key  to any mathematical 



representation of causal principles. This is a set or space 3  of  

entities which, through their permitted modes of combination 

relative to the dimension of time,  model the causal structure.  

 Causation necessarily takes place in time. However the 

topological character of the time dimension, ( infinite in one or 

both directions, open or closed, circular, branching, etc. ) need not 

be specified in advance but may be derivable indirectly from the 

nature of the entities in the causal algebra.  

      Other independent  magnitudes entering into calculations 

of the forms and functions of the causal algebra will be the 

vectorial quantities that define the atemporal representation  

spaces for the  phenomena under consideration. Their ranges may 

be anything: real or complex numbers, other functions, 

indeterminates, etc., even ideas such as “wave”, or “particle”. An 

example of the latter is found in the following metaphorical 

algebraic construction: 

 Let  O stands for “ 1-slit apparatus” 

  T    “           “     “2-slit apparatus 

  E     “          “       “ Electron “ 

  P      “          “       “ Particle “  

  W     “         “        “ Wave”  

Then we have the ‘equations’ :   

  O (E ) =   P 

  T(E)     =  W 

                                            
3 In our terminology: 
 Set : Any entity constructible through and consistent with  the Zermelo-Fraenkel 
Axioms of Set Theory. 
 Space : A collection of indeterminate  entities that becomes a set through the 
specification of n of them, where n is finite or countable. Thus, Euclidean 2- space 

becomes a set when any three  of its points (  say 
p1 = (0, 0), p2 = (0,1) and
p3 = (1,0)

 . 

The purpose of the 3rd point is to establish the direction of positive orientation.   



 The “space” for this  Causal Algebra  is The Space of 

Apparatuses    for determining the particulate or wave nature  of 

elementary particles.  Its “domain” could be  the collection of all 

electrons in the universe, whereas its  “range” consists of the two 

terms “particle” and “wave”. Thus we see that a Causal Algebra 

need not be expressed in terms of operators or functions ultimately 

acting on numbers. In this example, the temporal dimension enters 

into the various ways in which One- and Two- Slit Apparatuses , ( 

and presumably others )  can be combined in parallel and series, to 

produce outputs of “particle” or “wave” or combinations of these 

with differing probabilities,  on ensembles of particles.  

 Causal Algebras have both an Extrinsic and an Intrinsic 

Structure. 
(a )  The Extrinsic  Structure:   

 Any Causal Algebra , C   will, in general, contain functions , 

f,g,..., function spaces F, G,....operators H , and Operator Spaces H . 

For example, in the full elaboration of the Quantum Theory, one 

has :  
   - Schrödinger Wave Functions , { ψα } 

  - Complete families of Orthogonal Functions , { Ωα }  

  - Observable Operators : Energy, Momentum, etc. 

   - Families of Unitary Linear Operators : scalar, vector, 

tensor, differential forms, integral transformations, von Neumann 

Algebras, Jordan Algebras, etc.  

 All of these things will be covered by the generic term  

“agent”, since  it is their common attribute that they all act on 

something beyond themselves, a space, a geometry, real or complex 

numbers, etc.  

 The extrinsic structure of a Causal Algebra , C , is the set of 

rules by which agents may be put together in combination to 



produce other agents. Thus, let U   be the class of hypermaximal 

self-adjoint operators acting on the closed Hilbert Space  H. Then 

if K and L are operators in  U   , then K+L will also be  in  U  , but 

KL will only be in U   if they commute. Likewise, if O  is the class 

of invertible matrices, and A, B,  ε   O    ,   then AB and BA will be 

in O  , but A+B may not be .  

 The extrinsic structure of a causal algebra therefore consists of 

the complete set of combination rules under which  its set S of 

agents is closed.  which are closed in S . This definition naturally 

extends the standard notion of a function algebra , closed under 

multiplication, addition and subtraction, multiplication by scalars 

and functional composition.  

 If   C is to be a appropriate model for some conception of 

causation, ideally every composition rule will reflect some feature 

of that conception. 

 Examples:   
   [ A ] : Any space E of functions  modeling “entropy” 

must respect the 2ND Law of Thermodynamics : The absolute 

quantity of entropy in an isolated system always increases. E  then 

must be a subclass of the space M  of all monotonically increasing 

functions of time, which is closed under addition, multiplication 

by a positive number, composition and time translation.  Neither E 

nor M    are not closed under subtraction: 

¬(!f ,g"E# f $ g "E)  
 

 This statement does in fact reflect an important property of 

thermal systems: heat does not move from a cold to a warmer body.   

  [ B ] :  Let T   be the class of all ‘motions’ of a particle p, 

along a single spatial dimension, x, as a function of time, t. The 

Light Principle of Special  Relativity states that energy cannot be 



transported across space at a speed exceeding c, the speed of light. 

The subclass T of  T  which models the Light Principle for material 

objects consists of functions x = f(t) such that f ' (x) < c  for every 

value of t. This class can be enlarged to include functions for which  
f+
' (t) ! f"

' (t)  at certain ‘jump points ‘ of the derivative. To be 

precise we define T as the class of functions such that Max|f 

’(x)|=m < c , and T
_

 as the boundary of T :  this includes those 

functions which equal c at some points, or  may converge to ± c as t 

goes to + or - infinity.  

 

T

X

x=ct
B

A

 

Figure 1 
(Functional arcs in half-plane A never  cross the l ight 

cone)  
 Note that, although jumps of the derivative    are allowed, 

spontaneous jumps along the trajectory of f    are forbidden; also 

that non-right or left-differentiable functions -at any point! - are 

also forbidden. 

 What is the extrinsic structure of this class of functions? If f,g 
ε  T  , and  x = h( A, B ; t ) ) = Af(t) + Bg(t) , then  

 x’ = Af’(t) + Bg’(t)  

 | Af’(t) + Bg’(t) | �   |A| |f’(t)| + |B||g’(t)|   �  c ( |A| + |B| ) . 



Therefore if A| + |B| �  1 , then h (A,B ; t) will always be in T  . This 

is an example of an extrinsic law, but it is not ‘natural’ to 

Relativity.  
In general h ε  T if Max Af ' (t) + Bg' (t) = m < c   Here  we are 

ignoring the subtleties of jumps in the derivative, but this 

extension is easily made. Differentiating,  we find that the critical 

points of this expression are at: 
Af '' (t )+ Bg' ' (t) = 0, or

A
B = !

g' ' (t)

f ' ' (t)
= a(t) ,that is

Ba(t ) = A

 

 There is now some intrigue to this problem, because we must 

solve the equation for “a”  , for every combination of values A and 

B, and single out those for which the expression for the first 

derivative is bounded away from c. However, since 

 
Max Af ' (t) + Bg' (t) = m < c!

Max kAf ' (t) + kBg' (t) = km < kc
  

we know that for any pair of values (A,B) which satisfy this 

condition, the entire segment of values (kA, kB)  |k|�  1 also satisfy 

that condition. So far we have been considering  mathematical  

composition laws   for the spaces T and  T
_

  . However, relativistic 

motions do not compose under these relations but under the 

hyperbolic tangent law   : 

(+) h' =
f ' + g'

1! f 'g' c2
 

 Under the normal interpretation of relativistic composition of 

velocities, the previous  relations have no physical meaning. What 

other composition laws are there in this space which have a 

meaningful interpretation in Special Relativity?  Consider the 

motion x = m cost  , where m < c. The derivative of this is 



x
'
= !msin t  , which has a maximum of m . This can be interpreted 

as a relativistic “clock” that ‘ticks’ at each reversal of direction 

along the x-axis, at the times t = 0 ,  ±2nπ  . If we modify the first  

equation to  x = mAcos(t A) , then the system will still change 

direction at the maximum value m in each direction, but its period 

will be reduced to   P  = 2π /A . Since these are permissible 

relativistic motions, this fact has the following interpretation: 

There is nothing in the theory of Special Relativity which prohibits 

the construction of clocks of any period   .  

 One is thus led to make a distinction between two kinds of 

composition laws for the motions of T  ( T
_

 )  

 I . Mathematical  Composition Laws, those suggested by the 

symmetries inherent to the function space. An example is: 
(m) A + B = 1,and f ,g!T"
h = Af + Bg!T

 

 II. Relativistic Composition Laws such as  
(+) f ,g!T" h!T,where

h' =
f ' + g'

1# f 'g' c2
 , and  

 

(p) m < c,A ! 0" x = mAcos(t A)#T  

 Hence, T , as a Causal Algebra for Relativity  , contains ( + ) 

and ( p ) in its extrinsic structure, whereas ( m ) is not in the 

extrinsic structure.  

 There is a related Causal Algebra in which ( m ) does fit , 

which we may label ˆ T ! T. ˆ T  bears the roughly  the same 

relationship to T that a Lie Algebra bears to a Lie group. Let κ   be 

a constant with the property that the relativistic effects on objects 

moving at  speeds  κc  or less are undetectable   . We then define  ˆ T    

as the subset of T  consisting of motions f ,  such that m = Max|f’| �   



κc/2 . In this subspace the margin of error between relativistic 

addition (+)  and ordinary addition ( m )  is undetectable. Observe 

that, although addition is a valid extrinsic composition law for  ˆ T   , 

it  is not closed under addition. 
(b )  The Intrins ic  Structure 

 What really distinguishes one scientific discipline from all 

others, apart from its  subject matter, ( which may overlap or 

sometimes even be identical)  is its  catalogue of representation 

spaces. Let us look at some standard examples : Statistical 

Mechanics studies the behavior of ensembles of systems in Phase 

Space  ; Special Relativity is enacted  in Minkowski Space-Time;  

General Relativity in Riemannian 4-manifolds with inertial index 

-2;  Quantum Mechanics lives in Position Space, Momentum Space 

, Hilbert Spaces, and spaces of operator algebras, or Banach Spaces ; 

String Theories employ very elaborate and abstract representation 

spaces; Lagrangian Mechanics operates over  isolated  systems in 

Configuration Space , while Hamiltonian Mechanics operates on 

single systems in Phase Space, or on bundles formed from the same 

system translated along a continuous spectrum of initial 

conditions .  

 The representation spaces for Biology are likewise 

interpenetrated with graphs and lattices: hereditary trees, 

Aristotelian and Linnaen classification schemes, graph structures 

for chemical reactions , genetic codes .... 

 This characterization is no less true of the Human Sciences 

than of the Natural. Scientific theories do address themselves 

directly to observations or raw data, but to the pictures  we build 

upon  these observations and data . Such  pictures are sketched , 

modeled, elaborated, then displayed in a “plenum ” whose nature 

is  purely conceptual , which  in its ultimate refinement is 



mathematical. It is from these images that theories arise which, 

when applied to them, generate predictions which are tested 

against   further observations of natural phenomena.  

 Consider a science such as psycho-analysis, which many, ( 

myself included), prefer to classify as a pseudo-science. Sigmund 

Freud’s many  representation schemes are crude to the point of 

embarrassment . All of his models are rife with  internal 

inconsistencies , while being   in contradiction with one another. 

 Yet any one of them  , whether it be  the libido theory, the 

instinct theory ,  the mechanism  of repression, the Oedipus 

Complex, can be reduced without much difficulty to a collection  of 

schematic diagrams like engineer’s blueprints,  similar to those 

that depict the workings of a steam engine, a hydraulic pump  or a 

storage battery,  some sort of mechanical system. 

 In the repression theory for example, the Unconscious is a 

“place” , into which “painful thoughts” are “pushed”, or “buried”, 

and kept there by a kind of “censor” that looks remarkably like a 

steam engine’s safety valve. In the schematology of the Oedipus 

Complex, illicit sexual desire is “balanced” by the fear of 

patriarchal punishment. In this picture all the emotions, love, 

jealousy, fear, hatred, guilt, anxiety are ingeniously coupled in a 

dynamic though stable equilibrium like the ropes, cams, gears and 

pulleys of an elaborate waterwheel.  

 No science ever makes predictions other than through  appeal 

to the abstract model in its appropriate representation space. 

Predictions are made on  the model , then  tested through 

interaction with external reality.  

 The Intrinsic Structure of a Causal Algebra therefore  consists 

of the set of predictive mechanisms , constructed from agents in 

permissible combinations, acting   in the representation space  to 



produce , from present data , hypothetical models in other locations 

of space-time which can then be tested against experience or 

experiment.  

 Using quantum theory as an example, its  agents are 

Operators acting over Hilbert Spaces  and functions acting over 

Configuration Spaces ( position or momentum) .  

 The Extrinsic Causal Structure  of Quantum Theory   holds the 

rules for composing operators and families of operators . For Spin 

Operators these would be the properties of the tensor product. 

 The Intrinsic Causal Structure of Quantum Theory   consists of 

the rules and algorithm whereby one calculates eigenvalues and 

probabilities. Thus   < E >= !*|E|!dx3"   would be in the 

Intrinsic Structure.  

  In the case of  Special Relativity, the extrinsic structure  

contains the Lorentz group; the intrinsic structure applies the 

functions of this group to the calculation of  length contractions,  

time dilations, and mass increases  in Minkowski Space. 

 Even historiography can be shown to exhibit  representation 

spaces , agents, an extrinsic structure and an intrinsic structure. 

Since interpretation is an inherent part of this science, these will 

differ  from one historian to the next. No Hegelian would dispute 

this. However all historians relate their epics within a framework 

of assumptions about the ‘motors’ or ‘forces’ that have shaped the 

world. They also avail themselves of various theories about the 

way human nature works; these can on occasion be quite 

involuted. Still, there never was a historian for whom it was 

possible to describe the course of events in past or present society 

without speculation on human motives.  

 Our focus in this essay is not on the subject matter of the 

sciences per se, but  on their underlying  structure of causation. All 



of  science depends ultimately on prediction. Even mathematics is 

restricted by the possibility that errors may  turn up at some point 

in demonstrations or initial assumptions.  Back-reconstructive 

sciences such as geology depend on the uncovering of new 

evidences to decide between conflicting models of the past. 

Journalism,  in the best sense the historiography of the present, 

may be either invalidated  or confirmed by new evidence .  

 It is therefore the case that, for every  science,  one can always 

derive, from their formal description, the structure of one or more 

causal algebras ,  C = ( A   , E, I , R  ) , where 

   A    is the class of agents ( functions, operators, 

etc.) 

   E is the extrinsic structure 

   I   is the intrinsic structure 

   R  is the class of  representation spaces  

 One does not find the representations of the causal concepts 

in the  class of agents or their representation spaces, which are  

incorporated in  the extrinsic structure ( rules by which the agents 

combine among themselves), and  the intrinsic structure ( actions of 

the agents on the representation spaces generating  predictions ) . 

 What is meant by extrinsic versus intrinsic causation can best 

be seen through specific examples , to which we now turn: 
Example I  

“Every effect is also a cause.”  
 The statement   “Every effect is also a cause” has numerous 

interpretations. Corresponding to  each is  an appropriate causal 

algebra. The Kantian perspective  4  notwithstanding , the concept 

                                            
4By the “Kantian perspective”  , or “Kantian paradigm”, or more generally “Leibniz/Kantian 
paradigm” we shall mean the interpretation  of causation as expressed in Analogies 1 , 2 and 3,  
( Analogy 2 in particular ) , in the Critique of Pure Reason   .  



contained in this assertion  is neither self-evident nor  a synthetic  

apriori   .  In those sciences for which teleological descriptions are 

the standard , it may be  either invalid or irrelevant. With the  

general acknowledgment of  Darwin’s 2-stage evolutionary 

mechanism  the community of biologists inherited  a predilection 

for   teleological “explanations”  for the presence of even the most 

anomalous animal  body parts. The result has been a bizarre union 

of  a random mechanism ( adaptation) , with a determinist 

tautology ( selection ) , Not all of them are ‘adaptationists’, the 

extreme right wing,  one might say,  of this position, but many of 

them arrogate to themselves a peculiar talent for diagnosis, a 

special ability for discovering what things were “for “  , essentially 

a form of Platonism through the back door.  Of course if one asks 

them directly, none of them would ever confess to a belief that 

objects in the natural world hold the imprint of heavenly 

intentions.  

 In the worse cases, tautology blends with Panglossianism in 

an intimate weave: Why do creatures  have eyes?   To see with of 

course . Why do most mammals have  tails?    To enhance balance, 

to flick flies, as sexual ornaments, to extend the chassis of  

horizontal organization, to wrap around trees when climbing, to 

express joy or anxiety.  Whatever reasons particular biologists may 

advance for special cases , the Kuhnian paradigm of biology asserts 

, ( with appropriate cautions) that  tails increase the chances for 

survival ,otherwise animals wouldn’t have them  !  Therefore  

human beings don’t have them, because if we did, they would 

hinder our survival, etc. 

 The philosophical challenges and dilemmas of these forms of  

circular  reasoning  have been exhaustively discussed by many 

others. One cannot deny the validity of the Darwinian mechanism 



in small-scale adaptation and change, and most of the arguments 

center around  large-scale historical phenomena.   

 We will continue our discussion of the  causal postulate “ 

Every effect is also a cause”  , under 4 headings , in conjunction 

with interpretive mathematical models  in current use:  

 (i) Multi-Agents  

 (ii) Causal Chains 

 (iii) Feedback Loops 

 (iv) Self-generating motions: Vector Fields 

 

Multi-Agents 
 These are entities which, depending upon their use or 

context, can serve as operators, functions, vectors  or scalars. The 

distinction between ‘cause’ and ‘effect’ thereby becomes blurred, 

and may even disappear altogether : 

Once again it is quantum theory that gives us the richest selection 

of examples: the “pure state” vector ψ   , which is both a function  in 

its own right, the argument   of the set of observable operators , and 

a tool   for calculating eigenvalues , can also be interpreted as an 

operator   in its own right,  
namely the corresponding projection operator  !P   The action of 

this operator on its set of eigen-vectors yields their probabilities:   

ci
2
=< ! i |P! ! i >  

 A rather different example of a multi-agent is the speed of 

light , c, in Special Relativity .  It is first and foremost a scalar, a 

universal constant of the natural world, which can and has been 

measured to many places. This makes it an entity in the intrinsic 

structure.  



 Yet in the statements of the  theory of special relativity, it 

actually functions as an indeterminate    , essentially a letter    

expressing the ratio of the universal unit of time with that of 

length. In this form it has no specific value but rather serves a 

function, that of expressing the  combination rules for the agents of  

special relativity, in particular the identities of the Lorentz group. . 

In this capacity it belongs to the extrinsic structure. 

 In the same way, the number  “1” carries  the dual function of 

being the measure of a single unit of some magnitude, together 

with that of the   idea of “identity” in the abstract theory of groups.  

  

Causal Chains 
 Loosely speaking, a Causal Chain looks like this: An initial 

cause C1  , acts on a medium M1 to produce an effect E1  . ( Example: 

A potter acts on clay to produce a vase ) . By acting on yet another 

medium M2  , E1 becomes C2  : the change of context has turned an 

effect into a cause.  

( The vase is taken to market and is the cause of the potter’s 

receiving a good sum of money. ) . This in turn produces an effect 

E2  ( The money received from the sale) . In yet another context M 3 , 

E2   becomes a cause C3 , producing an effect E3 . ( The potter uses 

the money to dine in restaurants and grows fat) ..... Schematically: 
potter

!" vase

clay !" money

market !" obesity...etc.
food

  

 The basic unit in this process may be written: 



Ck =

Ek!1
"

Mk!1

# 

$ 
# 

% 

& 
% ' Ek  

 The “effect” does not turn into a “cause” until there is a 

substrate or domain on which it acts in a natural fashion to 

produce another effect.  
Analytically one pictures a class of functions F = { fα  } , acting on a 

set of domains Δ  = { Dα   } to produce objects in a set of ranges { Rα  

} , which are either scalars or functions, depending on the domains 

to which they are applied.  

 Let Mk   be the space of all mxn rectangular matrices with 

real or complex  entries, such that m , n �   k . If A , B e Mk  , define an 

“action” of A onto B by A!B " BA
T

 , when this matrix 

multiplication is defined. Symbolically, 

[m ! n]" [m ! j] = [ j ! n] . Therefore , actions are possible only 

between matrices of equal horizontal length, producing another 

matrix which serves both as a “scalar” and as another “function”. 

The “causal chains” described above can therefore be modeled 

somewhat as follows by  sequences of matrices in  Mk   : 
[m0 !m1]" [m0 !m2]" [m1 !m3]" [m2 ! m4 ]....
C1 M1 M2 M3

E1 = (C1 "M1) = C2
E2 = (C2 "M2 ) = C3
.... .......

Ek = (Ck "Mk ) = Ck+1

 

Every matrix except the first is a “medium”. The accumulated 

products are the “effects” which, acting on the next medium, 

becomes a “cause” , etc...  

Feedback 



 In the example of the potter and the vase one can imagine 

that, after the potter has sold the vase, he uses the money to buy 

more clay to make another vase. Such a “causal coupling” is 

usually combined with the increase in absolute value of some 

magnitude, producing the phenomena of positive and negative 

feedback. 

 In a typical scenario in the theory of dynamical systems, there 

is a fixed function,  for example !(z) = "z(1# z)  . Any of its 

arguments ω  , can be considered to be the “cause” of the value 

ω ’ = φ  (ω ) .  In this interpretation the complex number ω  “acts on” 

the medium,  the fixed function  φ  .  

 
 
 
 
 

Vector Fields 
 Let v|x = !i

i=1

n

" # #xi  be a vector field defined over an n-

dimensional manifold M. The field generates a flow !(", x)  from 

any starting point x on the surface. The fundamental properties of 

this flow are: 
(1)!(",!(# , x)) = !(" + #, x)
(2)!(0, x) = x

(3)
d!(", x)

d"|"=0
= v|x

 

 Identifying the parameter  ε   with time, the above list of 

properties states that in some fashion, the flow acts on itself  . If one 

allows that the increase in elapsed time from any given starting 



point is an irreversible process , ( It is a misnomer to say that “time 

moves”, any more than “space moves”. However systems “move 

through space”, and that motion is never instantaneous,  but 

always a ‘flow’ through time. ) , it follows that ε  must increase, in 

elapsed time   to a quantity  ε  + δ , which can be interpreted as the 

action of the flow !(" , x)   on   the flow !(", x)  .  

 Other interpretations of the statement “Every effect is also a 

cause” can be advanced, but these suffice for the purposes of 

illustration. 



 
 Example II 

 
Additivity  

 “Causal additivity” has three aspects, as depicted in the 

following instances:  

   (1) Two ounces of water combine with three 

ounces of water to give five ounces of water. ( The algebra of 

magnitudes)  

   (2) A 5-pound brick together with another 5-

pound brick gives two 5-pound bricks, not one 10-pound brick. ( 

The algebra of sets ) 

   (3)  A 220 Hertz pitch P1 of amplitude A ,  played  

simultaneously with  a 330 Hertz pitch P2 of amplitude B, produces 

a sound in which both pitches maintain their independence, the 

amplitude of which  is a highly non-linear function of A , B  , P1 

and  P2  . (Superposition principles) 

 As we will be making frequent reference to this last example 

we  will examine it in more detail: 

 The amplitude of a sound wave is not as simple a notion as 

one has been misled to imagine in generic education. At one 

extreme, any  extremal critical point  on the wave shape is an 

amplitude. The habit of designating the maximum  of the absolute 

value of the sound pressure as “the amplitude” relies on the 

assumption that the sound wave is periodic, the  period being  so 

minuscule that variations in the amplitude can be ignored.  

 Consider two pure tones: 
!1 = Asin"1t
!2 = Bsin"2t

   

These are ‘coupled’ to produce a wave shape: 



!1 = Asin"1t + Bsin"2t    

 The amplitudes are at the critical points. Setting the 

derivative to 0, we find that these are at times 
cos!2t

cos!1t
= "A!1 B!2  

 (1) The two frequencies are commensurable. Then the wave 

shape is periodic. Making the additional assumption that the 

period is so short enough that  the amplitudes at the various 

critical points can’t be distinguished. We let  µ   stand for a time at 

which the absolute value of ψ    attains its global maximum,  C . The 

calculation is straightforward and one obtains:  

C
2 =

AB!2 sin!1µ + B
2!2

2
" A

2!1
2
cos

2!1µ

B!2
 

 (2) If on the other hand, the period is very long, then the 

amplitude will appear to ‘fluctuate’ between a set of eigenvalues. 

The phenomenon is so far from being additive that the “sum” of 

the amplitudes A and B has generated not one, but an entire set of 

amplitudes 

 (3) If ω1 and ω2 are not commensurable, then the wave shape 

is not periodic but almost periodic. Then any number of 

possibilities may present themselves. The expression for C gives an 

absolute bound for the greatest possible amplitude, but the actual 

effect of the sound on a listener may differ greatly as a function of 

the two ratios A/B and   ω1 / ω2    . 

 We now return to an examination of the 3 categories of 

additive phenomena: 
 ( i  )  Magnitude Algebras .  
Quantitative Addition :  

  Let us start with 3 glasses of water. We have no way of 

measuring the volumes of water, but we know that glass G3 is so 



large that it can hold all the water from G1 and G2 combined. Let 

these amounts be M1 , M2 and M3 respectively. The extrinsic 

structure of the Causal Algebra C , for magnitudes  has no 

numbers, but it does have order relations, and operations + and -  

  (a) It is possible to set M1 , M2 and M3 in increasing 

order, with 

M1 �  M2 <  M3   

  (b)    M3 = M1 + M2  

  (c) If  water in G3 is now poured back into G1 until it is 

full, the remainder can be poured back into G2 until it is full. This 

is what is meant by an additive magnitude, and we can write M1 =  

M3 - M2 , and  

 M2 = M3  - M1 .  

 An essential feature of the notion of a ‘magnitude’ ,  is that the 

different parts of the water, from the viewpoint of the magnitude 

algebra, are indistinguishable.  

 If we take the glass G3 and, prior to pouring it back into G1 

and G2  , we shake it vigorously, this will have no effect on the 

result. We therefore define Magnitude as a kind of space of 

indistinguishable entities, on which it is possible to place an 

additive measure.  
II.  Concatenation Algebras.  Set Theory  :  

  Sets, as per Zermelo -Fraenkel, allow for no confusion or 

overlap in their elements. Two bricks remain two bricks, no matter 

what their weight is. 2 green bricks, 3 green bricks and an orange 

brick cannot be recombined ( without pulverization or recasting, 

which are not set theoretic operations ! ) into 3 green bricks, 2 

orange bricks and a red brick.  



 If an order-type be associated with a set, then one has the 

more familiar idea of a concatenation: a sequence of bricks laid out 

in a row, or a set of beads producing a pattern, tiling, etc. 

 The extrinsic structure of a concatenation algebra will contain 

the operations of union, intersection, complement, and so forth. 

More generally, one can speak of Boolean lattices as extrinsic 

structures. 

 The intrinsic structure may contain selection rules for 

choosing subsets (  the elements of the power set ) , or patterns and 

order relations between the various elements of the set.  

 It is these subtle differences between Point Set Topology  

and Measure Theory , between additive algebras of type II and 

those of type I, which produce the paradoxes and pathologies of 

Lesbesgue Measure and Lesbesgue Integration: Baire Sets, non-

Measurable Sets, the Tarski sphere construction, non-standard 

arithmetics and even the Continuum Hypothesis . 
III.  Superposition Principles:  

  Superposition combines “ measure and set inclusion “ , 

with  

“ magnitude and Cartesian product”  : superpositions are sums 

which can be both decomposed back into their prime components 

while working as additive magnitudes. To do this  a background 

of  irreducible components needs to be given in advance. For 

example, the number “2” , as magnitude   , is a prime in the ring Z of  

integers, though composite in the ring Z(i) . As a measure   the 

value “2” is unaffected by its decomposition over Euclidean rings :   

2 = 1 + 1 in all of them. 

 The situation is similar with respect to the wave functions of 

Quantum Theory, and caution is advised with speaking of “the 



superposition principle” without specifying the context in which 

it is operative. Recalling our previous example,  
! = Asin"1t + Bsin"2t    

To effect a unique decomposition of this shape into component 

functions, 
!1 = Asin"1t, !2 = Bsin"2t   , one has to specify the 

orthonormal basis relative to which there decomposition is being 

made. If, for example, ω1 and ω2 are incommensurable ,   ω1/ω2      = 

irrational , one can express  

( at least within a finite time frame) the component functions as  

sin!1t = rne
(in) t

"#

#
$

sin!2t = sne
(in)t

"#

#
$ , and

% = (Arn + Bsn )e
(in)t

"#

#
$

   

 Expressed against this set of basis vectors, ψ    can be written 

as the sum of two orthogonal functions in an endless number of 

ways. If one knows  that the  eigen-frequencies of y are ω1 and ω2 , 

one can apply the theory of almost-periodic functions to derive φ1 

and φ2 .  

 The extrinsic structure of aSuperposition Causal Algebra   ( 

SCA)  precedes looks something like this:  

 (1) One has  a pre-established  collection  of irreducible 

components , such as primes, basis vectors, building blocks , 

generating  a vector space over a ring , field , algebra, etc. 

 (2) The agents of the SCA are finite or infinite “sums” of these 

components, weighted by their coefficients. The word sum   is used 

in  

two senses  :  



   (i) As the Cartesian product, ( vectorial sum )  of 

the distinctive components. As in the way sets are augmented by 

the operation of union , these retain their identity and may be 

retrieved by a process which, very generally, may be called “co-

addition”, or “co-multiplication”   

  (ii ) As an algebraic sum obtained by “evaluating” the 

components in the ring of coefficients  at some point in space-time 

and thereby forming an infinite series over that ring, with 

appropriate criteria for convergence, etc.  

 In the situation presented by the  quantum theory  the wave 

function ψ   is both a vector and a magnitude. “Decomposing” the 

vector into unique components requires the presence of an operator 

which is relevant to the quantity  , possessing  a complete set of 

eigenfunctions that form the basis of the closed linear manifold 

which is the natural setting,  ( the background of natural 

phenomena)  for ψ   .  

What do we mean by a “relevant operator”?  If the operator K  

represents electron spin , and our particle isn’t an electron, or 

doesn’t have the set of internal freedoms known as spin, then the 

“action” of K on ψ    is without meaning.  

 However, associated with ψ    is a magnitude , or “norm”,  

given by 

< ! ,! >= !*!dx3
V"  . This quantity, like the water  shaken in 

the glass is without distinguishable parts:  It cannot be 

“decomposed” in the absence of a relevant operator.  

 Many examples from daily life come readily to mind. The 

evaluation process corresponds to an “unfaithful” transformation, 

reducing  a collection of distinguished components to an 

undifferentiated magnitude, rather analogous to the  way in which 



a Black Hole transforms all the different kinds of matter and energy 

entering it to a uniform “substance”  

( if that is the appropriate word ).  Example : In calculating  income 

tax, one translates all of one’s assets into  monetary equivalents. 

“Money” then operates like an undifferentiated “magnitude” 

under the extrinsic rules of a magnitude algebra. It is because of 

this useful property that the detestable institution of money will 

no doubt always be with us.  
EXAMPLE 3: Str ict Determinism  

 The first two examples have dealt with the extrinsic 

structures of certain standard causal algebras. The following 

assertion  is the victor in the popularity contest for intrinsic causal 

postulates: 
  “  If S is  a  state variable describing the 
behavior  of an isolated  system K ,  then all past 
and future values of S may be computed from the 
values of the magnitudes in S  and  all   their   time  
derivatives ,   at any   instant of time.  ”  
 The  statement says nothing about the combination rules for 

its agents of a causal algebra . What it does mandate is  a set of 

procedures  for extracting predictions from the range of magnitudes 

in its representation spaces  at an arbitrary  time t.  It is for this 

reason that  the normal assumption in most of physics is that the 

intrinsic structure of such causal algebras contain nothing but 

analytic functions,  representable as a Taylor Series of some non-

vanishing radius of convergence. Simply : the entire history of an 

analytic function may be computed from information  about its 

derivatives at any given instant.  

 It may not always be the case that every function in such 

algebras  is composable with every other function. Rules that 



restrict permissible combinations create  what’s sometimes  a 

“groupoid” , though it is high time mathematical terminology 

revealed more imagination. 

  However such structures are natural to physics. An 

electromagnetic field E  “acts on” a positively or negatively 

charged particle yet has no effect on a neutral particle such as a 

neutron N . As particles themselves may be treated as fields, the 

action of field E on field N may be deemed impermissible. It is 

somehow the case that , with respect to all forces except gravitation, 

individual bits of matter have the freedom to decide which forces 

they care to be subjected to!  

 If P signifies the “particle”, σ     the “parity of charge”  ( = -1, 0, 

1)  , and    
r 
v  its position vector then, symbolically 

  
E(Ps;

r 
v ) = !

r 
u +

r 
v  ,   

r 
u   being the displacement .   

EXAMPLE 4: 
Invariance Under Time Translation  

   Let  UA  be  a causal algebra obedient to a 

postulate of  time translational invariance. If F is any agent of  UA ,  

then  

          !F!t0(F(t)"U
A# f (t ± t0) "U )  

  This is the condition of temporal independence. It is not 

applicable in any space-time region of our universe  in which the 

Hubble expansion, or  conscious awareness play   a significant role 

in  events. Its normal domain of application is to small, isolated 

parts of the cosmos to which we give the suggestive name of 

“laboratories”. Thermodynamic dissipation is  assumed to move in 

the same arrow of time; according to Stephen Hawking, this 

process sets the direction for the former two. Entropy increase does 

retain a “time invariance” not present in the others , because one is 



free to begin a dissipative thermal process at any arbitrary point of 

space-time .  

 The condition of temporal invariance is unusual in that it is 

both an extrinsic rule of combination for the agents of  UA  , yet can 

also be employed in the intrinsic extraction of predictive 

information from particular situations.   Thus, the integral: 

 !(t ) = w(s " t ) f (s)ds
t0

#
$  has a dual interpretation as 

either 

  (i) A calculation made along the path of f for all time 

beyond the present, or:  

  (ii) An integration across a transverse cross-section of 

the family of functions { ft (s) } = { f(t+s ) }  at the  instant  t  , 

weighted by the function w. In the first case, σ  is a convolution of 

two vectors “w” and “f “ . In the second case, w is a probability 

density.  
❆❆❆❆❆❆❆❆❆❆❆❆  
❆❆❆❆❆❆❆❆❆❆❆❆  

  In the elucidation of both  extrinsic and intrinsic 

structures one is  guided by certain “criteria of reality” akin to  

those of Einstein, Podolsky and Rosen, themselves a simple 

application of Ockham’s Razor to the quantum domain.  

  ( Ea ) : Every composition rule of the extrinsic structure 

should correspond to invariant features of the observed universe.  

  ( Eb )  : Every invariant feature of the observed universe 

should find a representation in the agents and combination rules 

of the extrinsic structure 

 ( I a ) : Every algorithm  of the intrinsic structure should 

correspond to some empirically derived law of nature, (  Hooke’s 

Law, the Navier-Stokes equation, Avogadro’s Law, etc. )  



  ( I b )  : The mathematical form of every empirical law of  

the observed universe of the science under consideration  should 

be present  in the intrinsic structure of the causal algebra.  

 In the ideal case every entity that goes into the establishment 

of a causal algebra : agents, extrinsic and intrinsic structures, 

representation spaces and data of observation will correspond to 

some feature of what one might call the “description”: the world 

picture prior to interpretation shared in the understanding of all 

persons working in the particular field. It would be assumed, for 

example, that persons working in Zoology would agree that there 

exist animals, human, primates, birds, snakes and so forth. The 

evolutionary scenarios and hereditary trees that hypothetically 

unify this heterogeneous collection of random facts would belong 

to the causal algebra: ideally every tree would correspond to some 

feature of the living kingdom;  to every known feature of that 

kingdom there would correspond an entity in the causal algebra.  

 In the best of situations  the representation is a faithful 

isomorphism. In real scientific practice  one is generally satisfied 

with much less: in advancing a particular science one doesn’t wait 

for its principles to be identified in advance.  Investigators are 

usually quite satisfied to have  a serviceable homomorphism: 

everything in the model refers to something in the description, 

though the reverse may not be true. 

  Even this is not always possible,  and in many instances 

one works with a “best approximation”. Recall the cliché 

associated with quantum electrodynamics: “The best theory we 

have.” This is quite acceptable provided one is given in  advance 

some  purposes to which the theory will be applied.  

  

The 3 Temporal Modes  



 Every interpretation of the notion of causation must consider 

its application with respective to the 3 temporal categories of 

present, future  and past . These correspond to the scientific 

procedures of:  

   (I) Description 

   (II) Prediction 

   (III) Back-reconstruction 

 Of course any particular  science will  specialize in one or 

more of these modes , and we can speak of  the “Predictive 

Sciences” ( Physics, Chemistry ) , “Descriptive Sciences”   ( 

Journalism or Photography  which can be considered ‘sciences of 

the present’ ) , and “Back Reconstructive Sciences” such as History 

and Geology. However no science is really  comprehensive without 

orienting itself relative to all 3 temporal categories. 

 Our concerns in this essay  begin at the place after most of 

these things have been established as pre-requisites. The correct 

formulation  of causal assumptions  often serves as merely the  

starting point of irresolvable  controversies central to  a particular 

science. Consider the situation in geology:  largely a back-

reconstructive science, historically its vision has been obstructed  

by an antinomy, that of Uniformitarian versus Catastrophist 

interpretations of the origins of features of the earth’s topography. 

There are so many situations for which an inevitable logic appears 

to lead to either catastrophist and uniformitarian scenarios  

demonstrates that the basic concepts  of causation are never self 

evident, and that several   non-compatible causal descriptions , ( 

along with their  corresponding algebraic structures ) can be 

advanced. 

 “Uniformitarianism” and “catastrophism” are irreconcilable 

causal mechanisms. A Uniformitarian maintains that every feature 



of the earth’s past can be understood by appeal to processes at 

work on the earth as it is today. A Catastrophist will stress the 

existence of present features which oblige one to envisage  past 

processes of which there no traces, or very few, in  today’s world. 

This kind of trade-off is intrinsic to any back-reconstructive 

science. For, where can we turn to for our understanding of the past, 

if not the present? Yet, if back-reconstruction suggests formative 

processes which are not in existence now, how does one deal with 

the requirement of all science that explanations be testable against 

experience? It comes as no surprise to see the same debate 

resurfacing with respect to the cosmic inflation scenarios of Alan 

Guth and others, that postulate the past existence of a “Higgs scalar 

field” in the first micro-second of the Big Bang, which has since 

disappeared “ leaving not a jot behind”.  

 Consider the distinctive character of the kinds of differential 

equations one might develop to model uniformitarian versus 

catastrophist approaches.  The Uniformitarian might begin by 

making an inventory of all terrestrial processes and forces, 

convection, tectonic plate movements, volcanic activity, erosion, 

and so forth, that start juggling permutations and couplings of 

these to see how well they can reproduce the world around us. The 

Catastrophist might begin with a catalogue of all conceivable 

processes, governed say by every imaginable combination of 

differential forms expressed as Hamiltonians, to see if they produce 

better models. To take a well-known example, there is the famous 

capsizing 

catastrophe of Hugh Auchincloss: 
 “ In a series of b roadsides circulated 
to congressmen, government leaders,  
scientists,  and journalists over  half a  



century ,  as well as in a book published at 
his own expense,  Brown argued that the 
Earth capsizes at intervals of about 8000 
years,  each time wiping out whatever  
civilization has managed to emerge.  The 
next one,  he says,  i s  overdue,  and the 
Eskimos may be among the few survivors,  
because the polar  areas will be the least 
subjected to catastrophic water  action.”  

 (Walter Sullivan, “ Continents in Motion”, pg. 22, see 

Bibliography ) 

 One must therefore permit a considerable amount of leeway 

in the formation of the Extrinsic Structure of a causal algebra . The 

Intrinsic Structure is easier to deal with:  any set of practical or 

operational  formulae that  produce sufficiently close a correlation 

to the data are admissable.  

Modal Predicates  
 For the purposes of this essay,  the  possible   is defined as the 

collection of permissible universes induced by the action of the 

agents of the causal algebra on the representation spaces. The 

actual   is a special subspace of this, in which all unbound 

variables of the agents are replaced by their domain specifications 

in the raw database of observations.    

In a departure from the customary employment of the term, the  

impossible  is taken to mean the set of all extensions of    CAwhich 

can be expressed in its language ,  but lie outside the world 

description, or actual .   Anything  else  will be labeled  

inconceivable   .   

 For example: The Relativity Principle states that no material 

particle can attain , in any reference frame, the speed of light, c .  



One may easily construct “extensions” of relativity in which c is 

given a value larger than  299,729 km./sec. “Relativistic possibility” 

is that theory which replaces the specific value of light in our 

universe with an indeterminate constant, c, whereas “relativistic 

actuality” replaces c by the experimentally obtained value. 

 One might then identify the “inconceivable” ( vis-a-vis 

relativity)  as a universe in which there is no radiation.  “ 

impossibility “  and   

“ inconceivability” are therefore relative labels . 

 This picture may not satisfy the rigorous standards of  

sophisticated philosophers of science; nor am I totally satisfied 

with it myself.  We are content if we can provide a fresh insight 

into the  procedural assumptions which underlie scientific 

practice, assumptions  all too often taken for granted and which 

merit further scrutiny. 

Modal Calculi 
 We describe   3 symbolic calculi for representing the notions 

of possibility, necessity, actuality, knowability, etc. These are very 

tentative, and no axiomatic development from first principles is 

presented at this point. These formalisms will be employed in 

various places in this essay, as needed: 
I. Possibi l ity  versus  Necess ity   
 (a)   (q

p
! " ! p)    “ It is possible that q implies p” . The 

following formation is taken to be a tautology:  

(p! q)! (q
p

" ! " p)   

 “ p implies q ”  implies that “ “q implies p”  is possible “ .  
 (b) We also want p! q   “ p necessarily   implies q”  . This 

states that if p exists, then q must exist. It does not mean that p 

need exist. In other words, this notation is a short hand for 



!p"!q  . The way in which these are used is best illustrated by 

examples. 

 (1) Apple trees cause apples. However, a particular apple tree 

may be infertile and not produce any apples. However : if I hold an 

apple in my  hand, I know for a certainty   that there must have 

been a tree that produced it .  So, using the above  notation, one  

has:   
(apple! tree)

but

(tree
p

" # " apple)

  

 Clearly  there are many situations in which the effect 

necessarily implies the cause but not the reverse. Generalizing, one 

recognizes 4 distinct situations:  

 (1) Apples necessarily   imply apple trees,  the converse is 

possible only: 
(Effect! Cause) but

" (Cause
p

# " # Effect)
 

 (2) A living body necessarily   implies a future corpse . A dead 

carcass necessarily   implies the former  existence  of a living body. 5  
(p! q)   

 (3) A field strewn with corpses  implies  that there may   have 

been a massacre, but a massacre implies there must be dead bodies.   
(Cause! Effect) but

" (Effect
p

# " # Cause)
  

 (4) Education may produce wisdom; wisdom may have come 

from education.  

(Cause
p

! " ! Effect) and

" (Effect
p

! " ! Cause)
 

                                            
5Until such time as we are able to combine soups of DNA and other molecules  to exactly 
reconstruct the corpse of an animal ! 



 (2) is roughly  equivalent to “necessary and sufficient” in 

mathematics. The  essential paradox associated with the notion of 

past time,  is that only the past is certain, cannot be known only 

reconstructed. Lets give labels to these things:  

 (1) Back - reconstruction 

 (2) Formal equivalence   

 (3) Determinism 

 (4)  Correlation. 
 II. The Knowable ,  the  Unknowable  and  the  
Known  
 The situations peculiar to “The New Physics” ( the 

expression of A. d’Abro) require us to spend much of our time 

explaining or justifying the notion of the  “possible but 

unknowable”. This  idea is foreign to  classical science.  

 (a) Consider Proposition P1 :  X is unknowable and X --> Y   . 

 Question: Is this proposition true or false?  

 Example: Let X  be “ The evidence  burned in the fireplace 

proves Q’s  guilt   ” .  Let Y   be   “ There are 24 hours in a day.  ” 

Aristotelian material implication of Aristotelian logic states that 

the truth of Y is sufficient to determine the truth of P1 .  However, 

what if Y is false?  Examples 

 (i) “Since the evidence that was burned in the fireplace 

proves the guilt of Q,  Q is not guilty . “  

 (ii) “Since the evidence that was burned in the fireplace 

proves the guilt of Q,  Q is guilty.”  

By material implication , and assuming that Q is   guilty, which 

one of these statements is true? Both? Neither? One or the other?  

 It impresses me that since X is unknowable, we must deem 

both (i) and (ii) formally unknowable  .  



 Proposition P2 : “ Q’s guilt proves that the evidence burned 

in the fireplace proves the guilt of Q. “ This is obviously false, as is 

    “ Q’s innocence proves that the evidence 

burned in the fireplace proves the guilt of Q. “  

 The calculus of unknowables therefore seems to indicate that 

any true or false statement can imply an unknowable statement, 

but that no unknowable statement can imply either a true or a false 

statement. If both X and Y are unknowable, we must value the 

whole statement “unknowable” even those X and Y may be 

identical! Examples: 

 A. “ ‘The first name of the unknown soldier is Jack’ implies that 

his first name has four letters.” 

B. “ ‘The evidence burned in the fireplace proved the guilt of Q 

implies that the evidence in the fireplace proved the guilt of Q.” 

 Let T = true , F = false , U = unknowable.  
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 Example  2 :  This is based on the fact that, according to 

Special Relativity, if a light beam is sent from  earth at time t=0 ,  is 

bounced off a distant star about which we know nothing, and 

returns to earth at time t = T ,then it is intrinsically impossible to 

know the time at which the beam hit the surface of the star.  

     “The time on a clock on earth,  at which a 

light beam hit a distant star, exists.”  

 This is very   controversial, because the epistemology of 

relativity really seems to imply  that this “time” does not exist , 

since there is no way to know it. 

 Example  3 :    

 “The individual spins of a pair of entangled electrons exist.” 

    Another extremely controversial statement.  

 Example 4 : 

 “  The only evidence for Q’s guilt was burnt in the fireplace.  

 However  either Q’s guilt exists or Q’s innocence exist, but not 

both “  

 One can construct a consistent logic in which 4  is false.  



Lets introduce a few more predicates. The first is the conventional 

“existence” predicate :  !A   , “A exists.”   

 The second predicate we will designate by “ �  :    

 “ � T “ means  There exists a way of measuring T  .  

 What are the truth values of these in combination? I send a 

light beam out to a distant star about which I know nothing. I send 

this out at 12 noon; it bounces off the star and returns to me at 6 PM. 

By relativity the time when it bounced off the star is intrinsically 

unknowable.  Consider the following combinations: 

 (1)    !A“There exists a time at which the light beam bounced 

off the star.” 

 (2) ¬!"T   “ We cannot measure this existent time.”  Since 

there is no way to determine (1) , the question arises, does (2) have 

any meaning ?  (3) ¬!T   “T can’t be measured.”  

 The problem is that before relativity, Kantian and other 

systems of causation maintained that all events, measurable or not, 

gave rise to a trail of indirect effects that, sooner or later would 

become known. Just before his death, Q might write off a 

confession and send it to the newspapers. An eye-witness to the 

crime may surface 20 years later. etc. Even if these things did not 

happen, the possibility that they might happen was always open. 

But relativistic epistemology opened the door to events that were 

intrinsically unknowable because of the structure of physical theory .  

This is a totally new phenomenon. The other example I gave, of 

entangled electrons, is not so unusual, for one can argue that the 

“individual identity” of the electrons is just a fiction. However, 

when causation itself is propagated at a finite speed, one generates 

paradoxes that have never before been seen.  



 (4) P:(!T "¬#T )$#T =U  , where #T stands for the 

‘truth value of T’ ( true, false, unknowable) . Such entities will be 

deemed ‘intrinsically unknowable’ .   

 We introduce an example from psychology: For a great many 

traits , it is a fact that by knowing of them  we automatically change 

them . Therefore we can never know our present state but only a 

past one: if I’m killing myself because I drink contaminated water , 

then I can be called a “self-destructive human being”. But the 

moment I learn that this activity is destroying me, I stop it. 

Learning that I am a self-destructive human being means that I am 

no longer such.  

Schematically “P exists and P is unknown. When P  becomes 

known, it ceases to exist.” In the calculus we’ve been developing, 

one has: 
!P" (#P ="U")
(#P #"U")" ¬!P

 

 
III. The  Possible  and  the  Conceivable   
  In this context, “possibility”  relates only to entities 

which may be freely combined in thought experiments, or  systems 

in isolation, that are not prohibited by the restrictions on 

causation. We notate  the modal quantifier “P is possible” as  

>P<  . This means :  P is an element of the conceptual universe ( or 

collection of universes) constructible from the agents and rules of the 

causal algebra CA  .   

 Example: Consider the Uniformitarian Postulate for Geology   

:  “Every feature of the Earth’s past can be explained by processes 

at work in the Earth as it is today. “  

 Owing to the astronomical increase in astronomical 

knowledge in the modern world, the scope of geology is extended 



to include any sort of rock in the universe, notably the planets, 

moons and asteroids in the solar system, etc.  

 Relative to this principle, what is “possible” and what isn’t? 

 (1) The complete melting away of the ice caps is   possible, 

since we can explain that by the melting, even the disappearance, 

of glaciers in our own day. This despite the fact that history has 

never recorded the disappearance of the ice caps. 

 (2) Brown’s hypothesis of spontaneous capsizings, whereby 

the poles are flipped every 8,000 years is “not possible”. However, 

if it can be given a mechanism other than invisible blue devils at 

the earth’s core, or a fifth fundamental force of nature, etc., it may be 

deemed “conceivable”  

 Suppose we use the symbol:    UC
A

 to signify the collection 

of conceptual universes generated by  CA  . Then >P<  means that 

  P!UC
A . 

 “Not Possibility ” will be given a slightly different 

definition from the conventional one , and will be notated > P <  . 

This means that P is expressible in the language of CA , but not an 

element in any of the conceptual universes it generates. The 

collection of linguistic   universes generated by CA will be notated 

  IC
A. 

Therefore:   > P <! P "IC
A # P $UC

A.   

 Example: “Unicorns” are conceivable  in terms of the 

language of Zoology, but are not possible . They have no relevance 

to the language or concepts of Geology; we have another term for 

that: we say that “unicorns” are not conceivable   in the language of 

Geology , for which we use the symbol (P)*. The “impossible” will 

be taken to be anything that is either not possible or inconceivable  

Simply stated   (P)*! P "IC
A
(# UC

A
).  



 The “actuality” quantifier : as defined in this essay  actuality 

does not  refer directly to the actual world. To say that “P” is actual 

shall mean: P is a calculation from established domains of inputs 

into the arguments, functions and agents of   CA  . The “world of 

actuality”  , !CA is yet another collection of universes derivable 

from the causal algebra   . It contains only descriptions, not 

interpretations or laws. These descriptions can then be compared 

with the world of observation and experience for the purposes of 

falsification and prediction. Symbolically “P is actual” will be 

notated #P# ( The “number sign” indicating “quantification”) . 

 This is the complete modal calculus for the description of the 

algebraic structure of causation. Everything is inclusion, exclusion 

and negation; the calculus is a simple form of a Boolean Algebra. 

To summarize:  

  

!CA " UC
A " IC

A

# P## P $!CA

> P <# P $UC
A

> P <# P $IC
A
,P %UC

A

(P)
*# P%IC

A

 

 All this is fairly self-evident. One need merely point out that 

“not possible” and “impossible” are different categories. The 

“impossible” includes the   “not possible” as well as the 

“inconceivable”.  
❆❆❆❆❆❆❆❆❆❆❆❆  
❆❆❆❆❆❆❆❆❆❆❆❆  



 

Appendix to Chapter II 
Algebraic Causation in Quantum 

Theory :  
Four Formalisms  

I.  Heisenberg Formalism  
 (a) Principles of Causation: 

  1. Position and Momentum are non-commuting 

  2. Time and Energy are non-commuting 

  3. State vectors are time independent  

  4. Observables are matrix elements of infinite matrices 

and vibrate harmonically 

  5. Nothing exists at the quantum level beyond the 

probabilities computable from the action of the observables on the 

state vectors 

 (b)   Agents 

  1. Hermitian Matrices 

  2. Unitary Matrices 

  3. Classical Hamiltonians 

  4. Vectors 

 (c) The Extrinsic Structure 

  (i) Quantization 

  

q ! x •
p ! ih "() "x
E ! ih " () "t  

  (ii) Superposition 

  (iii) The algebra of inner products and matrices  in 

Hilbert Space 

 (d) Representation Spaces 



  (i) Configuration Space 

  (ii) Momentum Space 

  (iii) Hilbert Space 

 (e) The Intrinsic Structure 

  (i ) ih 
dAjk

dt
= !Ajk  

  (ii ) ih 
dA

dt
= [H ,A]  

  (iii ) ih 
dU(!)

dt
= HU(!)  

 

 

 II. Schrödinger Formalism 
The key differences of the Heisenberg and Schrödinger formalisms 

are  

  (a) Principles of Causation 

   * Simultaneous presence of all eigenvalues; wave 

equation “smeared” over space 

   * Observables are time independent  

   * State vectors are vibrating harmonic oscillators 

 

  (b) Extrinsic structure 

   * Observables are linear differential forms  

  (c) Representation Spaces 

   * The evolution of the state vector is analogous to 

that of the path of  light ray in Hamiltonian phase space 

  (d) Intrinsic Structure 

   ih 
!"

!t
= #

h 2

2m
$2" +V"  



 

3. Dirac Formalism 
  The Dirac Formalism does not differ conceptually from 

the others, but introduces an intelligent notation in the extrinsic 

structure which allows one to work with it more effective  

   (c) Extrinsic Structure 

   

Bras ! n
Kets ! m
Scalars: n m
Operators: m n
Tensors: a b

 

 

4. von Neumann Formalism 
  (a) Principles of Causation 

   (1) Existence of Sharp Values of Eigenvalues even 

when     unobserved 

   (2) Collapse of the Wave Packet on Observation 

  (b) Agents 

   Integral Linear Transformations  as Observables 

   Projection Operators  as states  

  (c) Extrinsic Structure 

   (1 ) von Neumann Algebras 

  (d) Intrinsic Structure 

   Stieljes Integrals 

   The Trace Formula 
  Prob. () = Tr. (P! • PW )  (check this in Redhead) 

   The Statistical Operator 
  W = ciP !"i

#  for mixtures 

❆❆❆❆❆❆❆❆❆❆❆❆  
❆❆❆❆❆❆❆❆❆❆❆❆



 

II. The Lagrange/Hamilton Paradigm 
(a )  Unpacking the Instant:  The Null Set 
as Infinite Well of Possibility.   

 The  instant   is an abstraction which, as with most  useful 

notions of science, corresponds to nothing in the phenomenal 

world.  That the nexus of change is always instantaneous  is a basic 

assumption of the physical sciences. In fact, an instant   in the 

trajectory of a monotonic state variable S(t)  is best understood  as 

the length of time between acquisition of a particular  value v, and 

its infinitesimal passage to the  value v + dv .  

 In and of itself an instant is  null and void. Nothing 

‘happens’ within the confines of the instant: indeed, to speak of 

events happening ‘inside’ the instant is deemed  a violation of 

language . Yet classical physics  ascribes an enormous content to 

the instant. There , and in hidden variables formulations and semi-

classical limits of quantum theory, the entire history, the so called  

world line of a system K  in isolation is considered to be present in 

the configuration of K at any arbitrarily selected instant. We call 

this The Lagrange/Hamilton Paradigm .    

 Gottfried Leibniz and Immanuel Kant envisaged an extreme 

form of the Lagrange/Hamilton paradigm, one in which  the entire 

cosmos, from inception to extinction, is entirely present at every 

point of space-time, in every instant of every location. The 

mirroring of the Macrocosm in the Microcosm, the arbitrarily great 

in the vanishingly small, is universally present.  

 Such a conception is theoretically testable: take an arbitrarily 

small region ρ   around some location, arbitrarily chosen, and 

explore how much of science can be deduced from the information 

available in ρ   .   



!

Impinging 
Universe  

 

 Without arguing either the pros or the cons of this conception 

we would merely remark that it corresponds to what science in fact 

labors to accomplish. Relative to the known or knowable universe, 

the earth is a negligible speck. Relative to the vast reaches of time, ( 

back to the Big Bang or the foreseeable future), the entire history of 

the human race is but an instant. Yet, it is from the information 

available here that we endeavour to determine all else that is 

happening everywhere.  

 The major difficulty with the Leibniz/Kant paradigm is that 

it leaves no room for thought experiments. Here indeed we are 

touching upon an irreducible contradiction within classical 

physics. On the one hand: we like to imagine that Universe so acts 

on  Earth that, from this earthbound prison we can divine the 

universal laws.  

 On the other hand: it is clear that science is unworkable, if 

not inconceivable, without allowing for the possibilities of the 

thought experiment  and the system in isolation . Both of these 

require that, by an act of mental visualization one can escape all 

biasing local conditions    , and place our laboratories in 

hypothetically ideal regions of space purified of all alien 



influences: gravity-free flat regions of space-time; perfect black 

boxes impervious to external fields; ideal ‘Schrödinger cats’ which 

have no way of letting the world know if they are alive or dead; 

containment vessels in which all the products of any reaction may 

be swept up to demonstrate the conservation of matter and 

energy..... 

 Another implication of the Leibniz/Kant paradigm is that 

every particle feels every force. There are no neutral particles, no 

neutrons. Both the strong and the weak nuclear forces are really 

coupled to infinity, although the coupling be so weak that we’ll 

never be able to detect it. Note that this is not so far off from 

Richard Feynman’s stance in Quantum Electrodynamics: the 

manifested paths of all moving entities, including  photons, are 

actually cancellations of the amplitudes of all possible paths. 

Thereby all neutrality is in effect cancellation  ; anything that can 

happen does, though almost all of it with vanishing probability.  

 We have inadvertently put our finger on the essential 

distinction between the Lagrange/Hamilton paradigm and the 

Leibniz/Kant paradigm. Lagrangian mechanics, as enriched to its 

modern form by William Rowan Hamilton, rests securely on the 

notion of the system in isolation. The substance  of a Lagrangian 

Configuration Space of 3N dimensions, ( where each particle is 

represented by 3 coordinate axes corresponding to the x,y,z 

coordinates in physical space) is such that , excepting only these N 

points, the rest of the  universe  is excluded in advance.  The 

Lagrangian differential form L = U - V    embodies the full 

teleology, the initial conditions, the motor of time evolution, and 

the ultimate fate of any dynamical system under its command.   

 The situation does not change materially when 

Configuration Space is enlarged to Hamilton’s Phase Space by the 



introduction of new variables, the generalized momenta, which are 

generated directly out of the Lagrangian through the substitutions  

pi =
!L

! qi
•

  

The Hamiltonian world-line moves, in a manner analogous to a 

sound wave through an incompressible fluid, from time -  �  to time 

+  �      , as if Phase Space were itself the sensorium of experience, a 

universe complete and closed on itself that is never intended to 

hook up with processes in the real world. 

 Lagrange/Hamilton systems are clocks; their very conception 

in an agreement with the notions of a clockwork universe so dear 

to the rationalists of the 18th century. Unlike terrestrial clocks, they 

cannot be influenced by tides, sunspots, cosmic rays, mechanical 

failures, entropy, expansions, inflations, and so on. Of course it is 

true that the variability of the potential V  , itself derivable from a 

gradient that is distributed over space, does represent , albeit in a 

very simplified or reduced fashion, the influence of the rest of the 

universe on the system of N particles.  

 However, in the full Leibniz/Kant paradigm, it is not only 

the universe which affects the system, but the system with also 

influences the rest of the universe, therefore also changes the 

potential. In addition, the universe is constantly interacting on 

itself, which means that the value of V  at every point must be a 

function of the value of V  at all other points.  

 Furthermore: given that Hamiltonian systems are, in general, 

not only C�    but analytic - otherwise stated, that the fibration of 

Phase Space 

by the bundle of world-lines determined by all possible initial 

conditions at a moment t = 0 , is holomorphic - it follows that 

knowledge of all time derivatives at that initial instant is 



sufficient to determine all of its trajectories through all of time. 

Once again, a Hamiltonian system figures as a closed universe, 

Phase Space as a mental construct.  

 We will be looking at various alternative models of the 

Lagrange/Hamilton paradigm in the following pages. Gottfried 

Wilhelm von Leibniz himself. ( “Leibniz” G. MacDonald Ross, 

Oxford UP 1984 pgs. 88-100)  constructed an algebraic model for  

Leibniz/Kant causation . The monads, present at every point of 

space, each containing others in a descending chain, are essentially 

observers, spectators for the entire cosmos. In line with his view 

that Ultimate Reality consists of the sum total of all existent mental 

viewpoints, the cosmos itself is nothing but this infinite 

congregation of witnesses. It is their acts of observation that bring 

the cosmos into being. 
  “In short,  there exist only monads,  
and monads are nothing other  than 
actualised sets of perceptions defined by a 
particular  point of view.” 

( Macdonald Ross, pg. 95)   
 “. . .It was one of the main theses of 
his philosophy that objective truth is  the 
summation of the different viewpoints of 
all  individuals .”  

(Ibid , pg. 75) 
“ We normally understand the world as 
consisting of objects of perception 
separate from and common to  different 
perceivers.  Leibniz held that such objects 
were only mental  constructs.  “  

(Ibid, pg. 90 )  



 The mathematical tools for constructing models or 

realizations of the programme of Leibniz’s Monadology have only 

been developed quite recently, in the Fractal Geometries of Benoit 

Mandlebrot and his school.  

 Kantian epistemology, an uniquely brilliant fusion of 

psychology with metaphysics, has been under attack from its 

inception. Indeed, it is to its credit that so much of it is   falsifiable 

and has in fact been falsified. Euclidean Geometry was dethroned 

from its exalted station as a synthetic apriori   by Gauss, Bolyai and 

Lobatchevsky in the 1870 ’s , ( although all   non-Euclidean and 

Riemannian geometries are locally Euclidean . ) Causal 

interconnectedness in the literal sense of Leibniz’ monadology 

was superceded by Special Relativity: once again, Bell’s Theorems 

and the Aspect Experiment have reunited the cosmos via  a  

‘correlation’ which , people such as Eberhardt and Stapp assure us , 

can’t convey information, yet which nevertheless remains 

mysterious.  

 It should also be noted that Mach’s Principle, which plays a 

large role in General Relativity, reaffirms the principle of a totally 

interdependent, interconnected universe. The idea is as old as 

religion, viz. “the fall of a sparrow...” Neo-Kantians like Ernst 

Cassirer and Idealists like Alfred North Whitehead have proposed 

various ways of reconciling the Kantian ideal with the new 

physics.    

  In theory, neither Quantum Theory nor classical 

Thermodynamics violate Leibniz/ Kant causality.  One cannot 

deny that physicists in these fields, when setting up experiments 

in their laboratories,  would no doubt consider it a hindrance to 

have to take  into account the influence of distant stars. 

Throughout this essay we will be taking a critical stance towards 



metaphysical opinions advanced by scientists concerning the 

postulates of causal governance in their disciplines  which  lie too 

far afield of real applications in their daily work .  

 Summarizing: whatever conclusions one may be inclined to 

reach about the “Large Scale Structure” of the universe, the 

Leibniz/Kant paradigm has little application in either the physical 

or the conceptual laboratory. It fails to deliver  with respect to two 

crucial requirements:   

 (1) Thought experiments are indispensable in the sciences.  

 (2)  Most of the phenomenological world is and will remain  

inaccessible to us.   
 (b )  Difficulties with the Leibniz/ Kant 

Paradigm   
 (i) Cancellation Points:    If one maintains that the history of 

the cosmos may be computed from all the information potentially 

available at a single point in space-time  one is led to deny the 

impossibility of all  symmetries leading to the cancellation of 

forces at that or any other point. 

 The theoretical possibility of systems in isolation leads one to the 

opposite conclusion :  Any compact, isolated system of material 

entities must have a force  barycenter, a cancellation point for all  

forces  operative  in  the system’s internal dynamics .  We are  

indebted to the mathematician René Thom for pointing this out to 

us.   

 To simplify the arguments, let S be a self-contained system of 

N particles. Define P as a generalized Phase Space of 9N 

coordinates specifying positions, velocities and accelerations in 

the 3 directions of space x, y, z. Normally one might say that 

positions and momenta ought to be sufficient. Let me counter this 

by making that observation that even in the simplest and earliest 



of dynamical theories, that of Newtonian gravitation, the 

accelerations are given first  . Momenta calculated from them 

through integration of Newton’s second law and the boundary 

conditions. Let the particles have positions, velocities and 

accelerations : 

X1,X1,
•
X1,
••
Y1,Y1,

•
Y1,
••
Z1,Z1,

•
Z1,
••

X2, X2,
•
X2,
••
.........XN , XN ,

•
XN

••
   

 , with masses M1 ...MN , charges  e1 ,.....eN  , etc.  Since the 

system is bounded within a compact region of space at any given 

instant, one can compute the collective moment from any point in 

the 9N-dimensional space, given as the inner product of the 

coordinates with certain functions of the various masses, charges 

,etc. 

M =
( f j

x x j + f j
y

! y j + f j
z z j ) + g j

x! x j+...+ hj
x x j+..

••

!
•

( f j
x +..) + gj

x +..+ hj
x+. .)!!!

 

 It is an elementary result from Affine Geometry, that there 
exists a unique barycenter  B = {x j

0, y j
0,z j

0,...} 

at which M = 0 . 

 This demonstrates that there is an instantaneous cancellation 

point. If we translation our coordinate system to the point B  by (1) 

spatial translation (2) change of reference frame and (3) 

introduction of Coriolis-like “fictive” force fields, then we can 

place the observer at a point at which, within the closed universe 

of the isolated system, all forces and influences are canceled. At 

that point the observer can detect no motion through space; his 

“lookout” is permanently set at generalized phase coordinates 
 

  

B = (0,0, 0,......0,0,0)

9N
1 2 4 4 4 3 4 4 4  



 All of this follows simply from the assumption that position, 

momentum and force are vector quantities, that is to say, linear 

differential operators on a finite Hilbert Space. At such 

cancellation points, neither Leibniz/Kant causation nor 

Lagrange/Hamilton causation can hold, because one cannot extract 

any information out of them. In particular, all individual massive 

particles , considered as systems in isolation, must have their own 

space/momentum/force barycenter where all the resultant sums of 

static, kinematic and dynamical magnitudes are annihilated. One 

might try to retain a form of total causal interconnectedness for 

most of the universe by treating such cancellation points as 

singularities, that is to say as exceptions. However, since each 

individual particle has its force barycenter, the point set on which 

Kantian causation may be presumed to hold must be in those 

domains of space-time in which matter is absent! 

 For the Leibniz/Kant paradigm to maintain  consistency one  

is led to postulate an unbounded universe:  a bounded universe 

must have  force barycenters. In our modern cosmological models 

these are ready to hand: the  Black Holes which, following the 

Hawking-Penrose interpretation, are timeless stable 

configurations at  the boundary of space-time. Since Hawking 

radiation derives from Quantum Field Theory, which is statistical, 

it does not enter into this discussion, which is concerned only with 

the two basic paradigms for determinism.  

 Following the standard cosmological model  a  universal 

cancellation point is clearly present at the moment  of the Big Bang.  

 Although an unmodified strict Leibniz/Kant paradigm 

implies an  unbounded  universe ,  one might still be able, in 

theory, to construct systems asymptotically  in isolation. One has to 

send them  as far beyond the Hubble horizon as one needs  to 



render negligible the forces acting upon them from the local 

universe. This construction is frequently employed in  the theory 

of Black Holes, where one often speaks of objects or radiation 

arriving “from infinity”.  

  On the other hand , since the Lagrange/Hamilton formalism 

for isolated systems does imply the existence of cancellation 

points, one might as well allow for the existence of  indefinitely 

large independent regions of space-time   in which all universe 

forces are,  ( like the amplitudes of Quantum  

Electrodynamics ) ,  canceled.  These would be ideal as regions into 

which to “move” or “drop” thought experiments and  systems in 

isolation.  

 The concept of the world-line, the backbone of both classical 

and quantum physics, requires a philosophically sound definition 

of the system in isolation. Although there is no reason why the real 

universe should “make space” for us to put our thought 

experiments into it, yet there is something incurably  wrong-

headed about positing one system of causal connections for the 

real world, and yet quite another one for thinking about it. 

 One might call it, “ the fundamental dilemma  of algebraic 

causation theory.”



 

(ii) Singularities 
 Singularities in the mathematical representations  of  

dynamical processes  ( whether in physics or the other sciences), are 

classifiable under many species and genera, of which the following 

is but a sampling:  

  (a) One or more of the state variables go to infinity. 

These singularities may be “removable” by changing the 

representation space. For example, the “line at infinity” bounding 

the projective plane can be eliminated by a map that transfers it 

homeomorphically onto the equator of the projective, or Kleinian, 

sphere. 

 (b) One or more of the state variables vanish . If a vector field 

vanishes at a point there is no way of determining the direction of 

a flow from that point, and the dynamics automatically stops. 

 (c) Jump discontinuities  : 

 
Time

Observable

 
 (d) A simple function such as    y = f(t) ,  becomes multi-

valued at some point t* . This can manifest itself as a sets of 

discontinuous jump, or as a continuous branching into several 

paths, or some combination of the two. 



 
 (e) A real-valued magnitude becomes imaginary or complex, 

and thus no longer corresponds to a quantity in the real world. In 

relativity, speeds larger than light are ruled out because they 

produce imaginary values for ! = 1" v
2

c2
 

 (f) The above case has several interesting generalizations. 

One way of looking at the transition x ---> z = x+iy  , from the real to 

the complex numbers, is to think of the imaginary part of z , or y, as 

a new dimension. Thus, one may consider any transition from k-

vectors to n-vectors , n �  k , as an singularity. This may be treated as 

a continuous transition by identifying the origins of the respective 

vector spaces Vk and Vn .  

 (g) By transferring this idea of a  singularity to configuration 

space, one can model the spontaneous breakup of a particle into 

smaller entities by transitions from 3 coordinates (x,y,z), to 3N 

coordinates.   

 (h ) The concept of an essential   singularity will be the focus 

of our attention at various places in this essay: A singularity  of a 

state variable S  at a point t*  is called essential if  it attains, in the 

limit of  all sequences of neighboring points  to it  ,   every possible 

value of its range.   The value at the point at infinity of the function 

w=  ez   is an  essential singularity.  



 (i) Sometimes the Schrödinger wave equation is treated as a 

distributed essential singularity    which is “smeared” over all of 

space with a certain probability. “Particles”  are configured at every 

location simultaneously. Quantum Electrodynamics  carries this 

interpretation one step further: all possible paths of a sub-atomic 

transition are considered as existing, even complex and time 

reversed ones , with probability amplitudes which must be 

summed to obtain the total picture. Indeed, situations in which all 

state variables are essential singularities at all points must 

uniquely characterize the quantum theory.  

 A similar construction applies to historiography: all 

interpretations of past events can be considered correct if one 

assigns to each of them a “plausibility factor” which functions like 

a probability.  

 Let us now spend some time - not nearly enough 

unfortunately - examining the treatment of singularities in the 

customary  causal schemes of  Physics and Biology:  

Physics 
(i) Black Holes 

 The vexing  issue of the existence of irreducible singularities 

at the very core of the causal description of nature,  has been with 

physical theory since  Kepler, Galileo and Newton refashioned  

physics into its present state. The conceptual device of  

concentrating the mass of a finite collection of particles at its 

centroid allows one to define a gravitational potential U(r) over the 

entire universe.  U goes  to infinity at this centroid. Theoretically  

when  one point- particle becomes trapped in the gravitational 

field of another  their relative speed  at collision will be infinite. 

One can only give thanks to the creator(s) of our universe(s) for 



having supplied its real material particles with enough  extension, 

density and hardness to prevent such catastrophes !  

 It is as if the universe had made a decision  to  divide by zero 

at certain privileged locations . The dilemma is not readily 

renormalizable. Indeed, it emerged as the core issue in Arthur 

Eddington’s attack on Subramanyan Chandrasekhar’s discovery, 

in the 1920’s, of the theoretical inevitability of Neutron Stars and 

Black Holes. When a star’s gravitational field overcomes all 

counter-active forces, it must automatically implode into this 

singular state of matter. One might argue  that the existence of such 

entities proves that the unthinkable can occur, and the universe 

yet survive!  For the Black Hole is the material realization of the 

infinite value of the gravitational potential  function at the 

barycenter of an isolated system.  The entire object is a singularity. 

According to most  observational astronomers, it does exist: there 

may even be one at the center of our own galaxy.  

 Not everyone agrees:   ( Quote Phillip Morrison: “I’ll believe in 

one when I ‘see’ it .”    ). The observation that , in the visible world 

at least, only finite amounts of any magnitude can exist appears to 

be universal . By an argument first propounded by  Anaximander, 

an infinite amount of any substance  implies  an infinite potential 

for Becoming in that substance. Since the theory of the origin of the 

universe in a Great Explosion is well established, what we call 

“time” began at some particular moment in the past. Therefore the 

forces producing Black Holes have only had a finite time in which 

to develop and operate, and could not have produced infinity of 

any substance, including that of a Black Hole.  



 

(ii) The Big Bang 
It was  previously observed that the  essential singularities of 

Schrödinger’s interpretation of quantum theory are disbursed 

throughout the universe in obedience to  a probability 

distribution .  The Big Bang is the unique paradigm  for a  non-

distributed   essential singularity . Gazing back to the first  

infinitesimal splinter of time from the initial explosion, the 

“Planck instant” ( between 10-33 to 10-42 sec.) , one beholds  a 

singular region of space-time  containing  all the matter and 

radiation of the universe at infinite temperature . Assuming  that 

the amount of matter/radiation in our is finite, then it is inherent in 

the  Maxwell-Boltzmann statistical model  heat and temperature, 

that  the phrase  “infinite temperature “ is equivalent to the presence  

of all potential configurations of matter and radiation in that  single  

instant.   In other words , an essential singularity.  

 Although essential singularities embody the most complete  

breakdown of traditional causation imaginable,   it is possible, ( 

we shall show this in the final section of the essay  ), by 

constructing causal algebras based on them, to model the possible 

forms of  determinism that may emanate  over time  from this 

massively acausal event. This original Ansatz provides, we believe, 

a solution to the fundamental paradox inherent in the Big Bang 

theory, namely that from the Chaos of the global essential 

singularity involving everything in the universe, there can emerge 

the coherency and determinism connecting all phenomena at the 

level of normal observation, i.e. non-quantum. Such essential 

singularity causal algebras   may turn out to be useful as models for 

the various inflationary scenarios that have gained currency in 

recent years.  



 It is highly doubtful that Leibniz’s scheme of causation in 

the  Monadology  6 ,  or that of Kant as set forth in the Third 

Analogy of Experience in the Critique of Pure Reason , 7  ( both of 

which posit the simultaneous influence of all things in all things), 

can be consistently applied in any universe, closed or open, 

without the requirement of singularities, void domains, force or 

matter vacua , or essential singularities.  

 If all the matter in the universe were contained in a compact 

region ,  the arguments already set forth would be sufficient to 

establish this point. If one assumes otherwise, that matter is 

distributed  throughout an infinite cosmos, one    quickly runs up 

against an Ölbers Paradox :   if every particle is obliged to ‘feel’ a  

perturbing influence coming from every other particle, then it must 

be under the perturbing influence of a potentially unlimited 

number of  forces. No object could withstand the accumulated 

pressure of such forces, which would either dissipate all matter to 

an infinite entropy, or crush everything into a Black Hole, or push 

all things to the speed of light.  

 So,  if the total force acting at every point in space be finite, 

there must be some mediating factor that dampens the 

contributions of other particles, and it is obvious that this 

mediating force must be an exponential expansion field. If the 

                                            
6“Thus, in saying that at any given time the state of each monad expresses the states of all the 
others,  Leibniz is just asserting that, given a complete knowledge of the state of any particular 
monad at any particular time, a sufficiently discerning mind could read off the state of any other 
monad at that time. Further, each state of a monad similarly reflects all past and future states of 
that monad. Consequently, if one knew completely the condition of any single monad at any time, 
and if one had adequate logical powers, one could determine the states of that and all other 
monads at all times. This is the sense in which ‘everything is connected with everything.’ “  Mates: 
Philosophy of Leibniz, pgs 38  , Oxford U.P. 1986 
 
7“ All substances, so far as they coexist, stand in thorough-going community, that is, in mutual 
interaction” Immanuel Kant, Critique of Pure Reason, pg. 233 , Norman Kemp translation  
 



force in question is the electromagnetic field, we are dealing with 

the standard resolution of the Ölbers paradox: back reconstruction 

to the origins of the expansion field leads to a Big Bang singularity. 

 The investigation of  all the possibilities for the construction 

of causal algebras for the modeling of Leibniz/ Kant  causation 

would undoubtedly unearth some interesting mathematics. Yet a 

strict adherence to their requirements raises  so many conceptual 

difficulties, and is so contrary  to the way we actually think about 

our world   , that there will be no further discussion of them in this 

essay.  

(iii) Particles as Systems in Isolation 
 Our attention has been drawn to this significant observation 

:  it is precisely at the cancellation points of isolated systems  that 

one  finds the infinite singularities of the gravitational potential :   

the mass-weighted barycenters. Otherwise stated  the two singular 

violations of Kantian causation: 

   (i) Cancellation points ( Inertia)  

   (ii) Infinite values of the  potential ( Gravity)  

occur at the same points in space-time. This is not unconnected to 

the equivalence of gravitational and inertial mass, which is the 

cornerstone of General Relativity. Paradoxically, whereas (i) , being 

the nullification of a vector sum of momenta, is quite consistent 

with mathematical continuity, (ii) , as an infinite quantity, is alien 

to our conception of a finite universe.  

 Therefore every particle, treated  a world unto itself , contains   

all  violations of Kantian causality. Conceptually there is little 

difference between  a ‘particle’ and a ‘system in isolation’ . No 

difficulties are anticipated if we sometimes use the two words 

interchangeably.  



Particles violate strict Kantian causation: it is not possible, from  

accumulating  data on the inner dynamics of a single particle, to 

intellectually project the history of the entire universe  in either 

direction of time. If we enlarge the notion of a particle to 

encompass this tiny patch of earth in the brief interval human 

science, our quest for a Theory of Everything is unalterably vain. 



 

BIOLOGY 
 The definition and identification of causal singularities and 

cancellation points in biological systems is a subject of 

considerable interest. What is it that distinguishes the animate 

from the inanimate? If this were an essay on ethics or metaphysics, 

the author would define a living organism as any physical object 

which it is immoral to injure. Since our focus  is, properly 

speaking, on  the mathematics of causation we can’t really use this 

fundamental line of demarcation between the animate and the 

inanimate, and will retreat to the far more restricted territory of the 

cell theory. This combines the  hypothesis of Schleiden (1838) and 

Schwann ( 1845)   ,   that the cell is the fundamental unit of living 

structure,  with Virchow’s axiom  ( 1858)  ,  stating that all living 

things are formed from pre-existing living cells. Up to the present 

day, these are the  cornerstones of biology. The viruses may be 

exempted from this broad agenda, or one might argue that their 

relationship between the animate and the inanimate is not yet 

well understood. In this section we will only be speaking of 

organisms, that is, creatures formed from one or more cells.  

 By appropriately extending the conception of Death, we can 

introduce an additional  axiom stating that all organisms die. For 

the purposes of the present analysis, “Death” shall signify the 

cessation of the individuality of the  organism. There are two ways 

in which this occurs: 

  (i) Death in the ordinary sense 

  (ii) The splitting of the organism into two or more units, 

either by mitosis, or the more complex process of meiosis. Likewise, 

when an earthworm is cut in two and regenerates two living 



individuals, we will consider that the original earthworm has died, 

and two new ones born.    

 Since the eventuality of death is an intrinsic characteristic of 

all organisms, one reasons that the total state S of an organism 

cannot be identical at any two moments t1 < t2  , of its living 

existence. The condition S( t1 ) = S ( t2 )  is equivalent to 

periodicity. This ( as long as the nutritive substrate and chemical 

composition of the environment are maintained and replenished)  

would imply a potentially eternal existence . Note that this 

statement is true, even when the individual cells in the organism 

die off and are replaced by formally identical ones. Eternal identity 

may be a plausible hypothesis for the elementary particles, but it 

has no place in the definition of living organisms.   

The Life-Expectancy Function 
 Because of  the absence of cycles,  the propagation of  

biological systems within their appropriate phase spaces must 

occur along  non self-intersecting world lines. Theoretically it 

should  be possible, from the information available at any single 

arbitrary moment in time t, to  define a monotonically decreasing 

maximum life expectancy function   , L(t) ,  at that  instant, and a  

minimum lower bound, B(t)    on the date of birth,  calculated 

backwards from that instant . Organisms have built-in  clocks with 

an irreversible count-down in the direction of the arrow of time.  

 Biological and physical systems exhibit major differences on 

other particulars as well:  

 (i) The concept  of the system in isolation  is  meaningless for 

biological systems. Organisms cannot be defined apart from the  

particular substrates   off which they feed, or the range of external 

conditions of their evolutionary niche:  All biological systems are 

characterized by dependence  



 (ii) Each species of plant and animal possesses a characteristic 

life-span, defined as an upper bound beyond which all members 

of the species must perish. Despite the propaganda surrounding 

Methuselah, and despite the astonishing advances of modern 

medical technology, no human being to our knowledge has ever 

living 200 years.  

 This upper bound is independent of all external conditions. 

If as a thought experiment we idealize an environment E, in which 

the potential for longevity is maximal, all other environments must 

detract from that potential. Thus if, at age 60, I know I cannot live 

another 90 years, then it may turn out that something happening to 

me at age 70 ( a disease, etc.) may reduce this upper bound to 20 

years. But  nothing can raise it to  80 years!  

 When external circumstances bring about an abrupt 

truncation of  life span, one can model the world line of the 

organism as  a jump discontinuity  to the ground state. Even 

without the intervention of fatal accidents, the  ‘vitality trajectory’ 

of an organism  points monotonically downwards. Although it is 

customary, particularly in societies of advanced technology, to 

believe in the existence of optimal environments for maximizing 

the life span, our medical knowledge is very primitive in this area. 

It is known  that the inhabitants of the  Caucasus mountains tend 

to be  long lived, which may be  correlated with  vigorous 

mountain climbing from an early age. This knowledge has made 

no impact on the social customs of scientifically advanced societies, 

where far too many persons spend  much of their time sitting in 

automobiles and behind desks, and rarely bother even to walk.  

  Yet it is undeniable that public medicine in the 

industrialized world has made great strides in the eliminate of 

famine, disease, ignorance  and war, and that people in them have a 



expectation age for longevity at least twice that of the Third World.    

Although we all seek to live as long as possible, we also realize  

that, even in the Caucasus,  there is an upper limit to life. It is a safe 

assumption  that for every person on earth  there is a function L (t), 

defined as the longest possible time that person can live upon 

reaching the age A= t - t0 , where  t0 is the time of birth.  Because of 

its substrate dependence, this function is not Lagrangian .  one 

cannot,  from a knowledge of its value and that of all its derivatives 

at any time, chart its future.  

 Whether comprehensive information about the organism’s 

state function S at time t is sufficient to describe the value of S at 

all previous times   back to  birth, is an open question. To a 

qualified doctor, the signs of prolonged malnutrition  can enable 

him to make an essentially accurate picture of a hunger victim’s  

condition as it was before the onset of famine. How far   into the 

past  this can be carried is conjectural. One does find  psychiatrists 

who claim to be able to discern from a woman’s gait that she was  

molested as a child; obviously they are arrant frauds. 

 It can be seen from this short analysis that there is more than a 

little subtlety and complexity in the Darwinian catch-phrase : “The 

Survival of the Fittest” .  Apart from vague generalizations and 

certain large-scale projections, little seems to be known about  how 

vitality is affected by circumstances. There is a genre of automatic 

thinking among many biologists, because of which they assume all 

to readily that organisms behave in such a way as to maximize their 

survival. All to often, this constitutes circular reasoning : it may be 

convenient for the science, ( much like the “hog theory” of 

economists which states that all human needs are insatiable 

always), but falls short of explaining what we see in nature.  



 Chain smokers have known for at least 30 years that every 

drag they take on a cigarette is bringing them closer to the grave; 

yet a great many have concluded that even the contemplation of 

the ordeal of quitting is too painful. In addition, some of them 

even continue to enjoy   smoking, bringing in an added 

complication. Mixing pain, pleasure, survival and reproduction 

properly in the Darwinian equation takes considerable skill: the 

biologist’s model for pain as an enhanced defense mechanism is 

simple-minded indeed.  

 (iii) Upon death the organism undergoes dissolution. As 

when the keystone of an arch is dislodged , a lynch-pin pulled, a 

ridge-pole broken, some key ingredient to the functioning of the 

holism of the organism is put out of commission. This causes a  

rapid shutting down of all sub-systems, followed by  the eventual 

disintegration of the various components of the functioning 

organism into  simple chemical compounds and elementary 

particles: dust unto dust. 8 

 In contrast, the dynamical systems of physics do not 

experience dissolution. Nor do quantum or thermodynamic 

processes behave in quite the same way. Atomic reactions bring 

about the transmutation of  particles into other particles. Although 

matter and energy may transform freely  in some   isolated physical 

system, the total amount of matter plus energy remains the same. 

Likewise, the theory of heat, energy and entropy is a statistical one. 

Fluctuations are permitted and they are known to occur. Yet the 

universal dying of all living organisms is not considered to be a 

statistical law like the flow of heat from warmer to colder bodies,  

but an absolute law like the law of gravitation .   

                                            
8One sandstorm in the Sahara says to the other: “Human to human” !  



Causal Algebras for Biological 
Systems 

 The preceding discussion has shown us that the Causal 

Algebras employed in the modeling of biological systems should 

contain  families of constants, variables, functions and operators 

governed by the following restrictions :   

 (1) Substrate dependency.  The metaphysic of the world-line 

has no relevance to biological systems. The nearest equivalent to 

this entity is the interaction surface   expressing the co-dependency  

of organism to substrate. Example : the Logistic Difference 

Equation of population biology y = λx(1-x) , and the 

corresponding Feigenbaum chart of period doubling.  

 (2) Irreversible temporal direction  :  Periodic, or even 

stationary,  equilibrium states are prohibited in the functional 

descriptions of organic trajectories.  

 (3) Temporal upper and lower bounds   on  the back-

reconstruction of ‘birth’ and the predicted time of  ‘death’. These 

bounds  must be computable from the local configuration 

surrounding  any moment  of the organism’s life span . 

 (4) The abrupt disintegration of the organism at death should 

be modeled as the resultant  consequence of damage, injury or 

destruction to some unifying, hierarchic principle within the 

organism-substrate interaction. This takes the form of  a  jump 

discontinuity in  entropy, with a corresponding drop of the energy 

of the system down to the ground potential of inert matter.  We see 

that this collection of recipes for  biological causation is far 

removed from the simplistic  world-lines of physical systems,  as 

described by a Hamiltonian flow in phase space. 



 There are special difficulties associated with  condition (1): 

substrate dependency.  Relative to pre-determined and fixed  

substrates ( air, water, food, etc.) the living organisms tied to them ( 

For example, animals  in the vicinity of a watering hole, etc.)  can, in 

theory, be assigned a “ Lagrangian”  . The local configuration of the 

organism at any moment generates a function beginning from some 

ground state and  terminates at some precise instant. In between 

these cut-offs the trajectory is roughly deterministic. Such a 

scenario cannot be modeled by families of analytic functions, which 

lack these properties. 

 We will not, at this moment, further elaborate on the 

construction of Causal Algebras  for biological systems, though we 

intend to do so in subsequent editions. The subject is truly 

enormous, perhaps as vast as life itself which is limitless: 

epigenetic landscapes, Catastrophe Theory, Chaos Theory, the 

Michaelas equation, evolutionary dynamics, even wide-ranging 

philosophical systems such as that of Teilhard de Chardin, must all 

enter into such a project. Key issues are substrate/organism 

interactions, ecological dynamics , the respective roles of teleology,  

freedom and accident, the identification of the “fundamental 

particles”, or “systems in isolation” appropriate to the life-sciences 

( genes,  cells, organisms, etc. ) . Even the moral issues specific to 

biology ( and to no other “hard science”)   may be amenable to 

algebraic descriptions.  
❆❆❆❆❆❆❆❆❆❆❆❆  
❆❆❆❆❆❆❆❆❆❆❆❆  

END OF PART I  
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I. Lagrange/Hamilton Paradigms 
(a )  Mathematical Representations of the 

Concept of the World-Line 
    (i)  Elaboration of the  

Dynamical Trajectory    
 More suitable to the workaday world of scientists  than the 

Leibniz-Kant paradigm, the Lagrange- Hamilton  paradigm has 

been the  modus vivendi   for the physical sciences   since the time of 

Galileo. It has four parts:    

 (i)   It is permissible to conceptualize arbitrarily large yet 

bounded regions R of our universe, over arbitrarily large yet finite  

intervals of time 

T = [ −τ  ,  τ  ]  . The combination of the spatial  and temporal 

interval produces a space-time region V = R! T  .  The duration 

of T, 2τ , is  centered on a distinguished point  t = 0 , the origin, or 

“now” moment of time.  R may be expanded or diminished to 

accommodate the world-lines of any system placed within it, as a 

function of τ  . In the modern terminology of General Relativity, 

the 0-point of time may be interpreted as a “Cauchy surface”, a 

region in which the notion of a “present moment” is definable.  



  The presence of all forces , particles or fields originating 

outside V    is either negligible or proscribed. What this  means in 

practice is that these entities   can be neglected as 3rd order or 

higher perturbations. One must go to the 3rd order , dx3 , because 

Newton’s Laws are first and second order in the time derivatives.  

 More generally one can speak of arbitrarily shaped “force 

vacuums” on which external force fields exert at most a kth order 

perturbation k �  3 .  

 (ii)  It is permissible to assert the presence of physical  

systems in  isolation     S, idealized from real observation, together 

with  their world lines, operative in these force vacua V .  Generally 

speaking, Lagrangian dynamics is a local theory and does not deal 

with  infinitely large  spaces or processes of infinitely long 

duration . One can of course admit them as idealizations in the 

description of strange attractors and related phenomena.  

 (iii) Let S be a system in isolation.  In the Lagrangian 

formulation   it is permissible  possible to represent S, at some 

moment t=0 in time, as a single point in an affine Configuration 

Space    of finite dimension 3N   , N being the number of  point 

masses . In the Hamiltonian formulation   one may speak more 

generally of representations in a Phase Space   of 6N-k dimensions , 

whose coordinates cover the positions and generalized momenta of 

the particles,  less the number k  of constraints. S’s  temporal 

trajectory through either the Lagrangian configuration space or 

Hamilton’s phase space  is called the system’s world-line ,  LS   . 

 The term “affine”  is employed here because no apriori metric 

properties are assumed to hold apriori   between points of these 

spaces. Their elucidation often gives rise to measurement problems 

characteristic of specific disciplines. It is customary to place metric, 

differential and simplectic structures on phase spaces, particularly  



in Statistical Mechanics, but these are not essential to the notion of 

the world line and the system in isolation.     

 (iv)  In both directions from the “present ” t = 0 of a 

hypothetical observer , LS   is a single-valued function of its 

coordinates at that moment, ( know as “initial conditions”)  , and 

its behavior in any infinitesimal neighborhood around that 

moment . This is true whether one is dealing with configuration 

space, phase space, or any of the prolongation spaces suitable to the 

equations of motion.  

 The  principles governing the local determinism  of 

Lagrangian dynamics may therefore be summarized in the 3 key 

expressions system in isolation  , world-line  , and initial conditions  

.    

 It is (iv) which supplies the crucial Lagrange-Hamilton  

principle of causation that governs the construction of Causal 

Algebras of agents  

( operators and functions) over phase spaces. Notice that (iv) is not 

inherent in  (i) , (ii) and (iii) . These rather express independence 

from   

principles of global determinism   , i.e. such things as Mach’s 

Principle, the Hubble Expansion Field, the Cosmological 

Constant, the Anthropic Principle, Cosmic Inflation and so forth. 

Indeed, as we have seen from the work of Hawking, Ellis, Penrose, 

Geroch and others  who have sought  to  describe the large-scale 

structure of the universe on the basis of Einstein’s Field Equations, 

Lagrangian scenarios are not sufficient to this task. A considerable 

amount of extrinsic topological structure must also be imposed , 

entailing  many difficulties in the designation of singularities.  

 Condition (iv) may be called the principle of local 

determinism  . As was shown  by Hume , it is not capable of 



demonstration or proof. Despite this, ever since Laplace, many 

scientists have accorded it the  status of an article of dogmatic faith 

that  approaches religion.  

 The distinction between ‘direct’ and ‘indirect’ , or ‘manifest’ 

and ‘derived’ information about the configuration of  LS  in the 

neighborhood of an instant is crucial to Lagrangian causation.  The 

direct information  consists of the actual values of the 6N-k 

coordinates at the origin: the initial conditions. In and of 

themselves,  these  are insufficient: a  photograph taken of the 

system at this moment  will tell us nothing about its potential 

evolution or antecedents . The shape of LS   before and after the 

present  is indirectly   constructed by drawing a tiny hypersphere 

centered on the location of S in the configuration space   V at the 

temporal origin. The distinction between “phase space” and 

“configuration space” mirrors the distinction between “direct” and 

“indirect” information.  

  Indeed, the complete specification of momenta and positions 

represented by a single point in the phase space is required only for 

the laying down of initial conditions of the trajectories in the 

configuration space .  In this loose sense, phase space acts like a 

tangent plane , or more accurately, a symplectic space, in  which are 

housed the Lie algebra of vector fields that determine the flow of 

world-lines in the configuration space.  One then applies some 

computational process over or within that hypersphere that records 

local invariants  obtained through its shrinkage back to the  origin.  

This is what is meant by indirect information. Traditionally this 

has been assumed to be the taking of derivatives. As we shall see, 

there exist other possibilities as well.  

 



(ii) Collisions 
 Although collisions are characterized by discontinuous 

jumps in momentum in the encounters of particles, they do not 

violate the principle of local determinism. Let us carefully  

examined the situation : 

 Consider  the moment of impact of particles, P1 and  P2 , with 

masses M1 , M2 , and opposing velocities v1 , v2  :  

M1 , v1 M2 , v2  
 This may be identified in Phase Space by means of a single 

coordinate 
(x1, x2, p1, p2 )
p1 = M1v1 , p2 = M2v2

 

Before the collision, the equations of motion are simply 
x1 = A + v1t
x2 = B + v2t

 

where A and B are arbitrary starting points. The world line is 

determined by a pair of polynomials  in two variables, invariant 

first integrals of  in the  momenta : 
Momentum = K = p1 + p2 = M1v1 +M2v2

Energy = E =
p1
2

2M1
+
p2
2

2M2
=
M1v1

2 + M2v2
2

2

 

 We can use these equations to determine the new momenta 

and velocities after collision, and from this compute the values of 

the x-coordinates. There is a transfer of momentum in the amount 



µ = ±
2(M2p1 + M1p2 )

M1 + M2
 

to each of the particles, the new total momenta being therefore 
p
1
* = p1 ! µ

p
2
* = p2 + µ

 

with corresponding velocities 

v1
* = v1 !

2M2 (v1 + v2)

M1 +M2

v2
* = v2 +

2M1(v1 + v2)

M1 +M2

 

 A collision is therefore a singularity of a special kind.   It is 

still true that the time evolution may be calculated from 

information in an infinitesimal hypersphere drawn around the 

instantaneous location. However the forward and backward shapes 

of the world-line must be derived   separately  . Thus  although the 

invariant integrals of the motion are analytic everywhere, the 

specific equations of motion are only forward ( backward ) analytic 

from  the moment of collision, at which time there is a jump caused 

by  the transfer of a discrete quantity of momentum between the 

colliding particles .  

 Leibniz  expressed dissatisfaction with this traditional 

treatment of collisions. He pointed out that  since perfect 

“hardness”  does not exist in nature, collisions are never totally 

abrupt but have to  involve a deformation in the shape of each of 

the particles. The trajectories of their elastic rebound can therefore 

be hypothesized as being analytic:  

This is what is meant by saying that a  Lagrange-Hamilton 

continuum is a symplectic manifold: it  combines the affine 

structure of configuration space with its tangent bundle.  Via the 

Poisson bracket, the collection of invariant integrals of the 



Hamilton , or equivalently, the set of functions that commute with 

the Hamiltonian, form a Lie algebra which, through the principle 

of local determinism, completely  generates  the dynamic flow of 

world-lines through V.  

 The attribution of physical reality to the concept of the 

infinitesimal neighborhood is a central feature of those notions of 

causation which are traditional to science since the 17th century . 

The instant  , place  ,  infinitesimal displacement   and infinitesimal 

neighborhood   are the magnitudes fundamental to this world view. 

The proper topology for the representation spaces of Lagrange-

Hamilton causation is over the Cartesian products of points and 

neighborhoods, as exemplified by the  “jet spaces” of Singularity 

Theory and Differential Topology.  

 
❆❆❆❆❆❆❆❆❆❆❆❆    

(b )  Algebraic Models for  the Lagrange-Hamilton 
Paradigm  

 Most of the differential  equations of classical physics are 

second order in their derivatives and partial derivatives: Newton’s 

field equations, Maxwell’s equations, the wave equation,  heat 

equation and so on. Classical  solutions for them are preferentially 

those which are not only CN for some integer N , but analytic 

everywhere save at perhaps a collection of isolated singularities 

that can be calculated  from the equations themselves. 

 The motivation for this preference is straightforward : the 

unfolding of their entire history in both directions in time may be 

computed from the information available in an infinitesimal 

neighborhood about any point.  Analytic functions or families of 

analytic functions exemplify the basic property of the Lagrange-

Hamilton paradigm. In line with the previous discussion  



concerning collisions,   singularities of a certain kind may be 

admitted. Though they require special treatment, they do not 

violate the principle of local determinism. 

 The general meromorphic function is determined by a Taylor-

Maclaurin series up to its radius of convergence. By analytic 

extension its domain may often be extended over the sheets of their 

appropriate Riemann surfaces. Such  extensions may sometimes  ( 

as in Feynman’s Q.E.D.), have a physical interpretation.  

 This remarkable consonance between the conditions for 

Lagrange-Hamilton  causation and the properties of analytic 

functions has produced  a consensus in the physics community 

over the last 300 years, to the effect that for any situation in which 

local determinism is applicable, the universe  will conveniently 

throw in  some algebraically structured collection of analytic or 

meromorphic functions for its governance .  

 To take a simple example: under the assumption of 

analyticity, if a  function φ  and all its  derivatives at points t0 and 

t1 are identical , then φ   must be periodic with period  ω  = |t0 - t1 | .  

Yet there are alternative possibilities: consider  the standard  

Helmholtz equation  dx
2

d2t
= !A2x2  , A real .  

 If  admissible solutions are restricted to analytic functions, 

they will be taken from the  family of trigonometric equations:  
x(t ) = Rsin(At +! ) + S cos(At +" )   

 Nothing inherent in the equation itself obliges us to make 

such a restriction. There may arise  situations for which  solutions 

need only be at most Ck for a fixed integer k . Examine the 

following list of differential equations:  



(1) x ' (t) = x(t)
(2) tdx ! 2xdt = 0

(3) x '2 = 3
2
xx' '

(4) x' ' = !A2 x

 

 The form of  (1) compels its solutions to be analytic: iteration 

of the derivative produces the sequence 

x(n) = xn!1 =.....= x' = x   with solutions of the form  x = Aet  .  

 However (2) possesses  both analytic and non-analytic 

solutions. The analytic solutions are   x =
g
2
t
2

  , g an  arbitrary 

constant historically associated with gravitation . 

 A class of functions which are also solutions of this equation 

is :   

x = (
g
2 )t t    

x=(1/2)gt|t|

T

X

 

  These functions are continuous and first differentiable; the 

second derivative becomes singular at t=0 .  One might argue that 

strict  causality breaks down at this point. Yet it is not causality per 

se, but the Lagrangian paradigm that fails  :  the trajectory in the 

neighborhood of any time to the left of the origin does not contain  

enough information to predict the shape of the trajectory to the 

right of  origin.  One could imagine a particle in free fall against the 



earth’s gravity which at a certain moment   is deflected by an 

electromagnetic field. One can speak of a breakdown of causation, 

yet one can also invoke the intervention of a new  C1 determinate 

force. In any case, without the restriction to analytic solutions the 

mere form of  equation (2) is not sufficient in itself to describe a 

Lagrange-Hamilton causal trajectory . 

 As for equation (3) , it also admits  an alternative,  non-

analytic  solution : 

x = k t
3

  

This has derivatives up to the second order at 0 but not beyond.   

 Equation (4) is the traditional Helmholtz equation. By 

introducing a slight modification of the definition of an nth order 

derivative, a modification reflecting  the difference between the bi-

directional time of theoretical physics, and the mono-directional 

time of real measurements, we will construct non-analytic 

solutions of (4) :  

 Definition:  Suppose that a function x(t)  has a well-

defined nth order derivative everywhere in the neighborhood of (0) , 

but not necessarily at 0 itself. If     lim
t!0

+

d
n
x

dt
n
= lim

t!0
"

d
n
x

dt
n

   , given 

that both limits exist, then we will call this common value the nth 

derivative of the function at this point.  

 The advantage of this definition is that it is possible to 

define nth derivatives at  points for which not all previous 

derivatives are well-defined. Such a convention does in fact  reflect 

the usual way of measuring  acceleration. Acceleration is not 

measured “after the fact” :  change is always  in the forward 

direction of time. Thus , the convention of taking the t --> 0+ limit 

of the rate of change of the velocity as the “left” acceleration at that 

point, seems the most reasonable. If this is the same as the “right” 



acceleration, then we are justified in calling it simply, ‘ the 

acceleration’ , despite the possible existence of  a “jump” in the 

velocity :  

v

t

The Velocity Jump Leaves Acceleration 
Invariant  

 Given this convention,  one can admit the following class of  

non-analytic solutions for (4) : 
x = rsin(A|t|+!) + s cos(At + " )   

These might, for example, describe  harmonic wave fronts which 

“spontaneously” reverse direction at t=0  in such a way that the 

energy flux is unaltered.  



 

(i) Non-Differentiable Models for  
Lagrange-Hamilton Causation  
Nothing inheres in the structure of Lagrange-Hamilton 

causation  that requires modeling by families of analytic or 

meromorphic functions:     

 ANY algebra  A of functions  of time such that , for every  

element   
f(t)  ε   A, there exists a means of  extracting sufficient information 

from the  infinitesimal neighborhoods  of  arbitrary  points in the 

domain of f to reconstruct and back-reconstruct  f’s complete 

trajectory , can serve as a model for Lagrangian  causation.   

 Although the combination rules preserving  analyticity are of 

great generality, making them the natural choice for almost also 

situations in the real world, they do possess inherent limitations 

because of which they may be unsuitable in  certain instances. Let 

us  review the rules of extrinsic  structure for some  familiar 

collections of analytic functions in the complex plane:  

(A) Extrinsic combination rules for the set CR  of all 
analytic functions of radius of convergence ≤R , R > 0   
 If f, g ε  CR , then: 

  (i)   af +bg ε  CR  , a,b complex constants 

  (ii)  fg ε  CR 

  (iii) f(g) ε  CR    , when |g| < R  

  (iv) If f has an infinite radius of convergence , then f(g) 

ε  CR 

  (v) Let S �  R, both >0  . Via the homogenous 

transformation  



z --> (S/R)z all classes of analytic functions with finite radii of 

convergence are equivalent: f (z)!CR" f (Rz S) !CS  

  (vi) S > R -->  CS ! CR  

  (vii) f’ and the anti-derivative definable from the 

Taylor’s series are both ε  CR   .  

  (viii) One can also develop a set of extrinsic rules based 

on functions defined on the coefficients of the corresponding 

Taylor’s series. For example, if  
f = anz

n!  is  ε  CR , then the function g given by g = an
2zn!  

is also in this class. In general any function of the coefficients 

which, after a certain point, diminishes their absolute value, will 

produce a new element of CR  . 



 

(B) Additional extrinsic combination rules for the 
collection D  of analytic functions of  
infinite radius of convergence.  
  (i)   f ,g !D" f (g)!D  

  (ii)  fε  D   ,  gε  CR --> f (g) ε  D 

 Limitations on classes of analytic functions  become apparent 

when we examine their situation relative to spaces  

  (a)  FR of all complex functions defined in  a circle |z|< 

R, and 

  (b)  F of all functions defined for all complex z . The 

function algebras CR and  D do not constitute ideals  , ( under any 

of the composing extrinsic relations) as subspaces of the above. 
This means that if  ! "CR, and # "FR  , then 

a! + b" , !" , !(" ) , or "(!) , will not in general be analytic 

with radius of convergence R . 

 In the next section, we will examine some causal function 

algebras with the following properties: 

  (1) They model Lagrangian causality.  

  (2) They do not, in general, have the range of extrinsic 

structures found in closed algebras  of analytic functions.  

 (3) Some are right ideals under functional composition  in the 

space FM  of bounded real functions on the real line  . In other words  

If K is such an algebra, f ε  K  , and g ε   FM  , then g(f) ε  K  . 

(c) Densely Periodic Function 
Algebras  

 By a  densely periodic function on the real line we mean a 

periodic function that has no smallest period. That such functions 

exist is apparent from this simple example : 



 ! = {
1 x rational

0 x irrational
 

 Another example is supplied by the classic non-measurable 

Vitali set V from Lesbesgue measure theory. If A is an arbitrary set 

of reals, let 

 { x + A }  designate  the set obtained by adding the number x to 

every element of A . Q is , as is customary, designates the set of all 

rationals on the real line . If ri  and rj  are distinct rational numbers 

then the Vitali set has the following properties : 
(a){ri + V}!{r j + V)}= "

(b)Q + V = / R 
(c)Q!V = "

 

 Each rational  therefore translates V into a unique non-

overlapping set on / R  ; the complete collection of translates cover 

the real line.  Let P(x) be any real function defined on the domain  

V, and extend it to the rest of R  by the construction   
!x "V ,r "Q:P(x + r) = P(x)  . Every rational is therefore a 

period of P, and there is no smallest period. 

Theorem I: Let  L  be the collection of all periodic functions 

on R which have no smallest period. Then  L satisfies the 

conditions for an algebraic model for Lagrange-Hamilton 

causation.  
 PROOF : Let ρ   be an element of L,  x  any point in its 

domain. By definition the values of ρ   in arbitrarily small 

neighborhoods N around x go through its entire range. Thus, its 

entire trajectory over all of R can be constructed from the translates 

of N by any of its periods.  

 It follows that any natural phenomenon which can be 

modeled by a family of functions of  L is governed by  local 

determinism  causality.  



 In passing we may remark that “causation” is not inherent in 

the structure of the world line alone, but  also depends on the 

relationship of the function modeling that world-line to the class 

of all the agents of its causal algebra. The causal structure of a  

system S may be interpreted as a  form of local determinism when 

derived from a causal algebra A,  yet subject to some other forms of 

causation if the functions that produce it are elements of another  

causal algebra,  B :   

 Consider the differential equation:  

dx
dt
=
kx

t
3

   

with  solutions   

x = Ae
!
1

2kt 2    

This is not analytic at t = 0, although it is C�  .   All of its  derivatives 

vanish at  t= 0 , therefore  no causal information may be obtained 

from them. However if, rather than working in the 

algebra of analytic functions,  we work in the algebra of functions 

defined by a  Laurent Series , we can represent the above class of 

solutions as  
x = f (t) = 0 ,(t = 0)

= A(1!
1

2kt2
+

1

2!(2kt2)2
!

1

3!(2kt2)3
+..+

(!1)n

n!(2kt2 )n
+...),(t " 0)

  Densely periodic functions may appear to be somewhat 

“ far-fetched” in terms of modeling natural phenomena, yet they 

figure in the abstract theory of time measurement and clock 

construction:   

 Let D be the integral domain of all real numbers of the form:  
d = l + m! + n"
(l,m,n = 0, ±1,±2, ..,)  ,   



where  α is any non-rational algebraic number, and β  any 

transcendental number. Let   

!(t) = {
1 t "D
0 otherwise

  

  Γ  is a member of the causal algebra of functions defined by 

such integral domains, D. Let’s say that our theory of causation 

implies  that all of our modeling functions will belong to  D . Since 

D is everywhere dense in R,  knowledge of the behavior of Γ in any 

infinitesimal interval gives enough information to compute α  and 

β ,  and thereby  the whole trajectory of  Γ .  

 One can interpret such functions  Γ as models for the 

pulsation of a system of 3 coupled clocks with incommensurable 

periods. When  Γ = 1, one can imagine   a bell rings. Two such rings 

set up an interval which, at it will be translated periodically, can 

define a unit of temporal measurement. When Γ=0  there is silence, 

and no unit can be established. The function Γ  provides us with a 

model for quantized time.   

 THEOREM II : If P(x) is a continuous  periodic 

function on R, then it either has a smallest period or  is a constant:  
 Proof :   If P(x) has no smallest period, then those values x 

for which 

P(x ) = P(0 )  will be dense on the real line. Since P(x) is continuous, 

it must  be a  constant. 

 Corollary :  If periodicity is the essential feature of local 

determinism  for a system, then its causal function algebras will 

contain only constants or elements of L . 

 Let us now examine some interesting sub-algebras of  L : 

 1.  Functions with no smallest period, all of whose periods are 

commensurable.   



 2.   Functions which have periods of length 1/2k , k = 1,2,..... 

These take on an identical value in their range at all points of the 

domain expressible as a finite binary decimal.  
 Example :    Let: 

   (a) f (x) = 1 , when x is a finite binary decimal 

   (b) If x is rational, and x = p/q in lowest terms, then 

let  

   f(x) equal k , where q = k2n , and n is the highest 

exponent of 2    in q.  

   (c) If x irrational, then f(x) = 0  

 In certain situations , such non-analytic Lagrange-Hamilton 

models  may  be a better reflection of  the discrete semigroup 

structure of actual experimental time,  than the “everywhere 

continuous time” which is usually the  precondition  for algebras 

of analytic functions.  

 3.    Functions with two, more, or even an infinite number of 

mutually  incommensurable periods. These have already been 

discussed in connection with the sets, D.   

 4.  Generalizations of  the Vitali construction: let  B = { βµ } , 

be a Hamel Basis for the real numbers.  The construction of a Hamel 

basis, the details of which need not concern us but which depends 

upon the Axiom of Choice,  turns the real line into an infinite 

dimensional vector space over the field of the rationals, Q . Any 

real number ζ  , can be decomposed in a unique fashion as the dot 

product of a finite number  of elements bn1 ,bn2 ,...bnk  from the 

basis . with rational numbers  r1 ,r2 ,...,rk  from Q , such that 

x = r
1
b
n1
+ r

2
b
n2
+....r

k
b
nk

 

 Starting with a basis B , we separate it arbitrarily into a pair 

of arbitrary disjoint subsets B1 , B2 . Let C1 be the collection of  



reals built on Q and B1 , while C2  is the collection of reals  built 

from Q and B2 . Then  
C1!C2 = "
{C1 + C2}= / R 

 

 Define a function σ (x) arbitrarily on C1 . If µ  is any element 

of C2  , x any real number,  then we define σ  ( x+µ  ) = σ  (x)  . This 

is an element of L .  

 It is unlikely that Hamel bases  have much application to 

physics, but they fill out the  mathematical picture. We should not 

forget that applications for non-standard arithmetic have been 

found in Quantum Theory, and categories in Quantum Field 

Theory. At a certain point, the application of exotic mathematical 

disciplines to physics becomes more than a little fanciful, but what 

may appear exotic today can become the stuff of high school 

education a few millenia down the future.  

 

(i) Composition Laws for Densely 
Periodic Function Algebras 

  (a) .  In general, φ  and ψ  ε  L   does not imply  that  

θ   = aφ  + bψ   will be so.  However, if  φ  and ψ   have the same set   

of periods, or if  the set of periods of one of them is  a subset of the 

periods of the other , then θ   will be a member of  L .  

       (b)  If φ  ε   L, then functions of the form  λ = aφ (kt + r) + 

l  , a, k, r , l arbitrary constants, will belong to  L  with a different 

period set and a  phase. L  allows for translations in both time and 

space .  

 (c)  L is a left  ideal in the space of all bounded functions , B  . 
This property is common to all periodic functions. It is, naturally, a 

one-sided ideal only  : if φ   is in  L , and ψ   is any bounded 

function whatsoever, then  



θ    = ψ  (φ)  will be a member of  L  , although κ  = φ(ψ)  may not be 

so .This  property expresses an important feature of this form of 

Lagrange-Hamilton determinism. Observe that the space of all 

periodic functions does not, in and of itself,  constitute a causal 

algebra for  modeling  Lagrange-Hamilton  causation: one can, for 

example, envisage functions that are completely random in some 

closed interval [a,b] , which randomness is then propagated 

periodically over all time. Conversely,  although the analytic 

function algebras  are Lagrange-Hamilton , they are not ideals in B  
 The next theorem expresses another important feature of L  .  
 Definition :  By a systematic disturbance   is meant any  

perturbation of a world-line which systematically modifies 

positions, times and velocities but leaves the Hamiltonian, H,  

itself invariant. The notion of what constitutes a  Hamiltonian  is 

of course generalized to any sort of action principle from which the 

laws of motion may be obtained. Algebraically  a systematic 
disturbance Δ    may be thought of as a set of functions  of one 

variable,  

 
!0,!1,!2,....,!n,
"0,"1,"2,...."n

   

such that    
!0H(qi, pi ) = H(!1q1,.. ..,!nqk ;"1p1,.. ."npn)     

 Theorem iii : Let W be a universe whose causal laws are 

modeled by  functions from L. Then arbitrary systematic 

disturbances  can be admitted into W without violating its causal 

structure.  

 As examples of systematic disturbances one may cite some 

universal transformation that instantaneously  doubles all 

velocities, or one that shifts all light spectra to the red. By acting on 

the left, the invertible functions of B  are systematic disturbances: 



periodic phenomena continue to be periodic  and there is no 

change in the causal structure.  

  Since the subspace  of  analytic functions is not  an 

ideal in B  , either right or left,  systematic disturbances in an 

analytic model may violate causality. Let W  be  a universe 

operative under a cyclic time,  whose expansion-contraction cycle 

imposes a fixed period ρ  on all systems of W, and let Ψ  be a 

harmonic oscillator, or clock, constructed to oscillate at a period ζ  

which is incommensurable with ρ  .( Note that clocks in W with 

commensurable periods do not imply Lagrange-Hamilton 

determinism , but that incommensurable ones do! This is because 

they must pulse with two periods  the pulsation points of which 

form an integral domain  dense in the time continuum  . ) No left-

acting systematic disturbance on W will alter its period from ρ  , 

nor will it alter the nowhere continuous dual periodic structure of 

Ψ  .  

 II. Substrate-Dependent  
Lagrange-Hamilton  Causation 

 One can also consider   non-standard Lagrange-Hamilton 

causal algebras A  relative to a fixed energy  substrate. These may 

find applications in biology, notably  in the description of  

biological clocks.  

 The agents of such algebras will be dependent on a substrate 

domain D which, by convention, can be interpreted as some 

combination of  energy sources. In addition to the basic forces of 

nature,  D would carry information on  nutrients, chemicals, air and 

water, soil, sunlight, and other renewable  or non-renewable 

resources. In the simplest models such as one finds in the study of 

local ecologies, the functions of the substrate algebra will share the 

domains of  the same  “survival parameters”.  



 For the application of non-standard models for local 

determinism over a substrate, one can look at  a more general class 
of functions  Ξ   including L ,  with the property that  every value 

of their  range is attained in  every neighborhood of their  domain   :  

densely periodic functions,  everywhere continuous nowhere-

differentiable functions, space or volume filling functions, fractals, 

etc. Because of the imaginative work of Benoit  Mandelbrot and his 

followers, such objects are no longer considered  pathological.   
 Fix a function   ϕ   in Ξ   . We  define Λ  ϕ   as  the class of all 

functions θ   ε  Ξ  ,  such that for any two moments  s and t  ,     

!(s) = ! (t)" #(s) = #(t)   .  

 Under the condition that the complete trajectory of ϕ    is 

given, known in advance, Λ  ϕ  is a substrate -dependent causal 

algebra. One need compute the values of θ  only in any tiny sub-

interval of the domain, then use its homology with ϕ   to 

extrapolate over its entire graph.  

 For more specific applications, we can weaken the conditions 
on Ξ   as follows:  we admit elements   α  for which an interval  N  

exists   in which α   attains to every value in its range in every 

subinterval  . Fix one such function, α   to  be called the  standard 

referent function  . Construct,  before,  the function algebra  ΛΝ ,  α  . 

This is  a Lagrangian  causal substrate algebra, the substrate now 
being the region N. The elements of  ΛΝ ,  α   will be determined in 

N, but not necessarily beyond it .  
  Λ  ϕ   and ΛΝ ,  α    have more extrinsic structure than Ξ  : if f 

and g are in   Λ  ϕ   , then h = af + bg , a , b constants, will also be in    

Λ  ϕ   . Λ  ϕ    is also an ideal in B .  

 Notice, however, that it is not the case that   
q(t)!"# $ q(kt + h) !"#   



 for constants k and h !  Substrate algebras are not invariant under 

time translations or affine space transformations.  

 The whole notion of substrate algebras, or causal models 

whose predictive algorithms depend on knowledge of a 

previously predicated process or family of functions, can be richly 

elaborated within the context of Lagrangian and other general 

causation schemes. 
 For example, let  γ   be some fixed referent function, 

uniformly continuous and non- constant in any interval (a,b) , and 

A    the class of all analytic functions.  Then Aγ  ,  the class of all 

functions of the form 
 f = g ( γ  ( t)) , where g is analytic, is a substrate algebra. At any 

given time t, the value of γ   is known. By construction it is locally 

invertible, either from the left or  the right. This allows us to locally   
calculate all derivatives of g . Since the configuration of γ   is 

known one  can construct  the complete  trajectory of f from local 

information .  

 Substrate algebras, as already stated, find their natural 
domain of application in biology. In the above example γ    could 

be temperature, Aγ  a class of “metabolism functions” dependent 

on temperature.  

  (a) General Observations  on 
Lagrangian Causal Algebras 

 A reasonable requirement for any member of a Lagrange-

Hamilton  causal algebra is that all the procedures  which allows 

the construction of a  world line from the neighborhood of a point 

be  computable. Then it is possible to replace  infinitesimal 

neighborhoods by suitably chosen countably dense subsets, 



thereby eliminating the need for  exotic or ‘pathological’  

constructions involving  Hamel bases, etc. 

 Let t1 < t2 be distinct moments in time on the world line of a 

system S modeled by some Lagrange-Hamilton  causal algebra.  Let  
H(q1,...qn; p1,... pn )  designate some generalized form of 

Hamiltonian which, via some version of the Principle of Least 

Action, generates the equations of motion X:  
q j = ! j (t)

pj = " j (t) ; j =1,2,...n
 

H  generates a world-line in phase space. All of the above functions 

belong to the causal algebra. To derive H( t2 )  from H ( t1 ) one 

needs to know the values of  
  (i)  ! j (t) ; " j (t) ; j = 1,2,.. .n  

  (ii) A countable, indexed set of parameters { an (t1) } 

computable from the defining processes of the causal algebra 

  (iii) Some invertible connection between t1 and t2 

which, basically a formal scheme like a power series in time, or a 

collection of periodic cycles, which we write as C(  t1 , t2 ) . The 

general structure of a Lagrange-Hamilton causal algebra may then 

be described in the most general terms by the metaphorical 

equation: 
H(t2 ) =![H(t1);{a j};C(t1,t2 )] 

Here the procedure  Φ  is the same for all agents of the causal 

algebra.  



 

  III. Essential Singularities and  
Point-Source Algebras 

 A  Lagrangian Point-Source Causal Algebra  over a system S is 

defined as follows: 

  (i) Lagrange-Hamilton causation is no longer  assumed 

to hold in S  for all   moments  on the time continuum. Instead one 

admits only a discrete set of points  Ω   , which may be  countable or  

finite , or simply a unique starting point t=0   ,   at which the 

Lagrange-Hamilton  property holds. From the infinitesimal 

neighborhoods of the  moments belonging to the set Ω it is 

possible to compute that portion of the world line of S going from 

it to the right (present to future ) , up till the next element of  Ω . 

The distinguished moments belonging to   Ω   will be called  

“seeds” .  
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I. Causality and  Coding 

Codes  
  Let AL  be some Lagrangian,  or substrate dependent 

Lagrangian Causal Algebra. γ (t) is  any function in AL  , with 

domain 0  �   t < �  , and uniformly bounded range.  Let t1  < t2  be a 

pair of distinguished moments in the forward direction of time.  
Since   γ (t)  complies with Lagrange-Hamilton causality we can 

express the process whereby it constructs its trajectory from local 

information. information as:  
!(" (t1),#(t1,t2)) = " (t2)  

Ξ   belongs to the extrinsic structure of  AL   , and represents 

the algorithms  involving  in computing a countable set Π  = {α j  }   

of structural parameters ( analogous to Taylor’s coefficients or 
Fourier coefficients)   from the configuration of  γ (t) in an 

infinitesimal neighborhood of t1   χ  is a “connection operator” ,  

( infinite series , Σ  ,  for example ) that calculates the value of γ (t2  )  

from t1 , t2  , and the set Π  .  

  Let  S = s0,s1, s3,....= {sn}, 0 ! n < "   be a sequence of 

half-open intervals of the positive real line :   
s j = [a j ,bj ) with

0 ! a j < bj
 

 There is no other restriction on these intervals,  which may 

overlap or even be identical.  

 A  back-reconstructible  code   @ will be defined as a map 

from the set of non-negative integers Z+ onto itself. such that 

 (i)  @  is a computable function Z+ ---> Z+ 

 (ii) @  is back-reconstructible from any positive integer k . 

Given the values of @ (j) , for j �  k , there is a recursive formula for 



calculating   @(k-1) .  Thus, each range value of   @ at integers k, can 

be derived from both : 

 (i)  recursions on previous values 0  � n �    k-1 , and  

 (ii) recursions on all values  k+1 �   n   � �   .  

 Here is an example of such a code: 

   C = 0,1,0,1,2,0,1,2,3,,0,1,2,3,4 ,......  

From any segment of this sequence, one can figgure out that one is 

dealing with an arithmetic progression, which can then be back-

reconstructed. These are examples of codes  which cannot be back-

reconstructed: 

 (a) C = 1 ,1,1,1,1,1,1,2 3,4,2,3,4,2,3,4,2,3,4,2,3,4,..... the sequence 

2,3,4 going on forever. Since the infinite segment starting at entry 8 

is identical to the one starting at entry 11, there exists no unique 

back-reconstruction from  the infinite fragment 2,3,4,2,3,4,........ 

 (b) C = 2,0,1,2,3,0,1,2,3,4,...... 

 Although one recognizes this as an arithmetic progression, 

there is no way from an arbitrary sub-segment, to back-reconstruct 

the place at which the progression breaks off. 

 The application of  @ to the indices of the set of half-open 

intervals S will build the arc of a new function λ  (τ)  , from 

sections of the arc of γ (t) . This suggests that the function γ  must 

be  

of distinguishable character   : Given a < b , there do not exist a pair 

of real numbers c < d , with l = b-a  = d- c , and 
! (a + t) = ! (c + t) ,"t{0 # t # l}  

 Thus, no segment of the arc of γ    is congruent to any other 

segment by horizontal translation. Next, subdivide the domain of γ 

into segments determined by the elements of S, and concatenate 

these arcs in a sequence determined by the application of the code  
@   .  This process generates the arc of the derived function λ   . 



Since @ is a causal code, knowledge of the shape of λ   after any 

time T, combined with  knowledge of the behavior of the initial 
function γ    , allows one to reconstruct the entire arc of λ   from T  

back to the origin t = 0 .  

 
Functions of the form ξ  ( t) = λ  ( 1/t )  provide us with  an  

algebra for modeling point-source causality   . They map  �    into the 

origin, and intervals of time from T to  �    into intervals from 1/T to 0 

. As determined by the causal code , an  infinitesimal 
neighborhood of the origin  of ξ    will contain infinitely many 

sections of the arc  
of γ  ( 1/t)  .  

II. Patterned Functions 
 The class of patterned functions is formed from the set of all 

functions over [0 , �  ) by means of a causal code designated the 

“pattern index function”. They  are of interest  because they 

suggest numerous applications in the algebraic theory of 

causation. They can model  point-source causality from essential 

singularities, branching causality and the braided causalities to be 

discussed in the final part of this essay. 

 DEFINITION:   P (t) will be said to be patterned if, 

for any real number M>0, there is an L>0   such that P(t) = P(t+L  )   0 



< t < M. In other words, any section of the arc of P is congruent by 

horizontal translation to a section of arc at some  other location. 

Since the arc including these copies and the intervening interval is 

also a piece of the arc of P,  it follows that any section of P’s arc has 

an infinite number of congruent equivalents all along its range.  

 Periodic and  constant functions are obviously patterned. 

Patterned functions are the simplest generalization of the notion of 

periodicity. 
(a)  The pattern index funct ion 

  Let n be any positive integer, and factor it as 

n = (2k +1)2
m

. m is the exponent of 2  in n  .  ψ (n)= m   is  the 

pattern index function  .  Its  first few value  are: 

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

! (n) = 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1
 

 Extending the index function to non-positive values 

becomes complicated: bi-directional patterned functions are much  

more complicated than  uni-directional ones . For examples, it is 

possible to construct a patterned function for which the complete 

functional arc less than 0 is completely arbitrary. One then slices 

off progressively larger pieces of the negative portion of the arc 

from the origin,  then  concatenates them on the right side of the 

origin by means of the pattern index function.  

 The way in which the index function organizes the range of a 

uni-directional patterned function over the reals works as follows:  

Let A0 be some arbitrarily shaped arc over an initial domain  

s0 = [a0 ,b0 ) :  



 
 

 

To this we adjoin another arc A1 over domain s1  =[a1 , b1 ) then 

tack A0 onto it : 

 
 

A third arc , A2 is added, and the  arc A0A1A0  repeated: 

 
The method of construction is clear:  

P = A0A1A0A2A0A1A0A3A0A1A0A2A0A1A0A4... ..  

  The indices reproduce the range of the patterned index 

function. Equivalently, the code determined by ψ  ( j)  has been 

applied to the  set formed from pieces of the associated function  

A(t) .  
(b)Termino logy 

The section point set   Θ = {aj }  is the collection of places at which 

the domain of the associated function is cut. 



 
 

 

The places where new material is introduced into the arc of P , 

produces a set M={Mj}  called the pattern set .   

 
The pattern set is not unique: different versions of the pattern 

set, relating to different ways of defining the section point set, may 

still yield the same patterned function. 

 
 

Patterned function with two pattern sets , { Mi }  and { Mi’} 

 



  Corresponding associated functions and section points 

 

  

 If P(t)  is not too pathological one can define a unique 

minimal pattern set   M , which allows one to back-reconstruct a 

unique associated function A (t)  .  

 Given a pattern point Mj  , the pattern length   Lj   is defined 

as the largest interval  , ( starting from 0 and less than Mj )  on 

which :  
P(t) = P(t +Mj ), 0 ! t ! Lj  

 

 
Lastly there is the “D-series”, D = {Dj}. These are the places at 

which  arcs of the associated function are spliced onto those of the 

patterned function: 

 
 

 

 

 



 

Assuming that M is the minimal   pattern set,  each of these 

entities can be  calculated  from the others. The formulae  are 

presented below, without proof, since  the methods for deriving 

them are  straightforward:  
(c) Formulae for patterned funct ions  

(1.)Mk = Lk ! Lk!1

(2. )ak = Mk + ( j +1! k )Mj
j=0

k!1
"

(3.)Mk = ak + 2
k! j!2

j=0

k!2

" aj

(4. )ak = Lk ! Lj
j=0

k!1

"

(5.)Lk = ak + 2
k! j!1

j=0

k!1

" aj

(6.)Dk = (a# ( j )+1
j=1

k!1

" ! a# ( j ) )

 

 

 (i) The Algebraic Structure of 
Patterning 

 The translational congruence of sub-arcs  of patterned 

functions gives rise to an algebraic structure which is a 

generalization of the group of translations characteristic of periodic 

forms. 
 Let N = n1,n2,n3,.....,nk ,...  be a patterned sequence of 

positive integers, that is to say, a sequence with the property that 

any finite segment is exactly reproduced at infinitely many places.  

 Assume that N has  more than one distinct entry. If S1 is a 

finite segment of N starting from n0 ,  then we define the operator T 



as the “gaped concatenation” of S1 with its next distinct copy 

along the length of N. That is to say T = S1 !
( j )
S1
'

 . The letter j 

indicates the size of the gap between the two copies of S1 , while 

“^” is the symbol for concatenation.   

 The operator “E” fills the gap with the next section from the 

associated function, S2 . Thus ET(S1) = S1 ! S2 ! S1
'

  By 

convention E(E) = E. E is idempotent. If there is no gap in the 

concatenation, then E doesn’t change the form of the section of the 

patterned function. It is the operator “E” which distinguishes a 

patterned function from a periodic function, which is built up 

through repeated applications of T without gaps.  

Applying the concatenation operators T and E in succession to 

(A,S), the associated function with section point set , one has 

T(A,S) = S1!
j
S1
'

ET(A,S) = S1S2S1
'

TET(A,S) = S1S2S1
'
!
j
(S1S2S1

'
)'

ETET(A,S) = S1S2S1
'
S3(S1S2S1

'
)' ,

etc....

 

The algebra of operators generating a patterned function from the 

associated function with section point set, consists of 

combinations of T and E: T  applied to any segment of the domain 

of P , gap-concatenates it with the next identical segment. E takes 

any gapped form and fills the missing space with the relevant  

sections of the associated function.  

 

 

 

 



 

(ii) Composition Rules for Patterned 
Functions 

 The combination rules for patterned functions determine the 

extrinsic structure, the “modes of possibility” ,  of their 

corresponding causal algebra. Let D  be the collection of bounded 

patterned functions  with minimal associated functions on [0 , �  ) , 
and  
let P ε   D :  
 (1) If P is patterned, then aP(bx+c)  is patterned 

 (2) Periodic and constant functions are sub-algebras of D 

 (3) If P and Q share the same set  of pattern points ( this need 

not be the minimal set   in either case ), then F(f,g ) is patterned, 

where F is any function of two variables with  domain in  the 

Cartesian product of the ranges of f and g .  

 (4)  D form a right ideal   in the space F of all functions 

defined over R0
+  . If f ε   D , g ε   F  , then g(f)  ε   D  . This is true  

for all functions produced by the coding method: coded functional 

transformations are unaffected by any systematic alteration on 

their range. 

 (5) The algebra of patterned functions is structured by 

Boolean operations on the section point sets : If f and g are 

patterned functions derived from the same associated function ,A  , 
but with different 

section point sets, Sf and Sg , then one may construct patterned 

functions,  

notated h = f ! g, l = f " g  , built up from  A via the section 

point sets  Sh = Sf ! Sg ,Sl = S f " Sg .  



 For a  more detailed  picture of the dependency of the 

patterned functions on their associated functions and section point 

sets we display the appropriate  inversion formulae.  

(iii) Inversion Formulae 
 The analytic expression for the pattern index function  ϕ (x) , 

the exponent of 2 in x ,  is : !(n) = ([ n
2
j ]

j=1

"
# $ [n $1

2
j ])  . For 

negative values, m = -n, this becomes  

!(m) = ([1" m)
2 j
]

j=1

#

$ " ["m
2 j
])

= ! (1"m) = ! (n +1)

 

The formula breaks down for n=0 as one expects for a 

multiplicative function. It is obvious from the above that 

!(2! (n )) = ! (n)  

Since the jth summand in these infinite series has period 2 j , one 

can compute a Fourier series for the function !(x) " !([x]) : 

! ~ 2" + 2" (

sin(k"x
2
m )cos(

k"(2x #1)
2
m )

kk=1

$
%

m=1

$
% )  

Define functions [x]D,{x}D,  as follows: If Dj  < x < Dj+1 , then  
[x]D = Dj ,and

{x}D = j
  

 It can be shown that the relationship between the patterned 

function, P, and its associated function A is given by 
P(x) = A(x ! [x]D + a" ({x}D+1}
A(x) = P(x + L{x}S

! [x]S )
 

(d)  Braided Patterned Funct ions 
 These inversion formulae are not sufficient, without further 

information, to reconstruct the missing arc of a patterned function 



from any given point back to the origin. The “braiding” of the 

coding algorithm must also be considered : 

 We assume that we have complete information about the 

shape  of a mono-directional patterned function in the interval 

 [T, ∝ ) : 

 
Under what circumstances can the missing arc, L, be 

reconstructed, knowing only that P is a patterned function? There 

are in fact two classes of patterned functions: 

 (1) Those which, given the forward arc from T, permit the 

reconstruction of a unique arc from 0 to T, consonant with the 

patterning requirement, and 

 (2) Those which  allow 2, 3, or even an infinite number of 

possible back-reconstructions.  

 (i) Functions which back reconstruct a unique arc,  from any 

point T , will be called “unbraided” .  

 (ii) If the  arc reconstructed from the point T1 is unique , but 

there are several reconstructions possible from  T2  , then we will 

say that P is unbraided at T1 and braided at T2  .  

 A function which is braided everywhere will be referred to , 

simply, as a “braided patterned function” .   

 The alternative back-reconstructions P1 , P2 , P3 ...  for a 

patterned function at point T will be called the “braids” of the 

function at that point.  On the basis of the previous discussion one 

sees that  unbraided functions can model point source causality    



 We present two ways of constructing braided patterned 

functions:  

 [I .] Let A, B, C, D,.... be a set of distinct, finite functional arcs 

with domains on the x-axis. We will construct functions P1 and P2  

from concatenations of these arcs. Apart from the requirement that 

the length of the domain of A be equal to that of B, the domains of 

the remaining arcs in the set can be arbitrary .  P1 starts with A,   P2 

with B 

 P1 : A  

  P2 :B  

 Adjoin C to both functions as “filler” , then adjoin A to both 

sequences:  

P1 : A  C  A 

P2 :B  CA 

 Insert D as filler, and adjoin B to both functions: 

P1 : A  C  A  DB 

P2 :B  CAD   B 

 Insert E as filler, then repeat ACA in both sequences: 

P1 : A  C  A  DE  ACA 

P2 :B  CAD   E    ACA 

 Insert F as filler, then repeat BCADB in both functions:  

P1 : A  C  A  DBE  ACA  FBCADB 

P2 :B  CADB   E ACAF  BCADB 

 Insert G as filler and repeat ACADBEACA in both sequences. 

The lower bracketting  indicates the patterning :  

 



  

P1: ACA{DBE||ACA{||FBCADEGACADBEACA1 2 4 4 3 4 4 ||HBCADBE

P2:BCADB1 2 4 3 4 EACAFBCADB1 2 4 3 4 GACADBEACAHBCADBEACAF1 2 4 4 3 4 4 

 

 The method of construction is clear. Having reached a pattern 

point, of either P1  or P2 ,  one inserts a new  length taken from the 

set of sections  ( the operator E) . Then one applies the patterning 

process, ( the operator T) , to the other function.  

 The associated functions for P1 and P2   are quite different: 

A1 : A .C . DBE .FBCADBG .HBCADBEACAFBCADBI ..... 

A2 : B  .CAD .EACAF .GACADBEACAH ..... 

 [II.] : Let κ  and ρ   and  be two functional arcs of 

distinguished character over the x-axis. Form the set of all possible 
combinations of     κ  and ρ  , enumerated by some counting 

method. For example:  

 

 

 
 

 

 

 



C0 = ! ,
C1 = " ,
C2 = !! ,
C3 = !" ,
C4 = "! ,
C5 = "" ,
C6 = !!! ,
C7 = !!" ,
C8 = !"! ,
C9 = "!! ,
C10 = "!" ,
C11 = ""! ,etc.

 

 Concatenate the C’s into an unbroken sequence C0C1C2 ....... 

No matter how the enumeration is done   , the resulting functional 

arc will be that of a patterned function that is braided everywhere. 

Also, the number of braids increases to infinity as the initial point 

T moves to infinity. Indeed, between 0 and T  any combination 

of κ ’s and ρ  ’s adding up to the length T  , can be combined  and 

the resultant function will be patterned.  

Braided patterned functions  will turn out to be  very 

convenient for modeling some of the  forms of branching causation  

described in the next section.  

 THEOREM 1: Let P  be a non-periodic  analytic   

function over the positive reals. Then P cannot be a patterned 

function 

 Proof:   Analytic functions model local determinism. 

Therefore any repetition of local conditions must produce an 

identical future.  P must therefore be either periodic or non-

analytic.  

 Clearly, it is the very property which makes analytic 

functions suitable for the modeling of Lagrangian causality, that 



makes it impossible to cut and splice them to produce other 

analytic functions. 

 Theorem 2 :  Let  Ω  (z)  be some non-periodic, analytic 

function over the reals. If Ω  , in combination with an arbitrary 

section-point set Θ  , is the associated function for some patterned 

function, P, then P cannot be braided anywhere. 

 Proof :  Since A(z) is not periodic by hypothesis , all the 

points of a pattern set , M, must be non-analytic points on the 

domain of P 

 
 

The set of points at which P  fails to be locally analytic is a 

subset of the D-series {Dj }, namely { D2n }. To derive the pattern 

point set  

M = {Mj  }  one can employ  a simple congruence method: Since A(z) 

is neither periodic nor constant, identical arcs on P must have come 

from the same section of A  .  

 Via this procedure one can reconstruct the section point set, 

and from this, combined with the analyticity of A, one can 

completely back- reconstruct P from any point , T. Therefore P has a 

unique back-reconstruction everywhere and is braided nowhere.  

 If   A is   periodic,  then braided configurations can be 

produced because of the ambiguity of the locations of the section 

points . 



 

III.Branching  Causation  
(a)  Overview 

  One discovers that there exists a marked disparity 

between the assertions made by scientists about their axiomatic 

assumptions , and the methods employed in their actual research. 

For example,  scientists  working in different fields usually assume 

they’re talking about the same thing when they speak of causality. 

However this is belied by the manner in which they interpret their  

findings and discoveries. We illustrate this observation through  a 

brief survey over several  major scientific disciplines:  

(i)Mathematics  
 Mathematics is inherently acausal. A tautological 

relationship between primitive elements  and pre-established 

axioms  is not normally treated as causal. Causality implies both: 

 (i) Temporal dependence 

 (ii) Temporal asymmetry 

 Note that whereas (i) is basic to any discussion of causality, 

 (ii) has been the subject to extensive debate ever since the origin  

of  Thermodynamics. The facile resemblance of  

“  ‘ p implies q’   does not imply ‘q implies p’   “ 
¬[( p! q)! (q! p)] 

with  

“ ‘  h causes k’   does not imply that  ‘k causes h’   ” 
¬[(h! k)" (k! h)] 

although both are asymmetries, does not introduce a causal 

structure into mathematics. The material implication “ p implies q” 

gives one no information concerning either the temporality or 

atemporality of p or q. Thus, the statement:  



S: “ If it rains today I had eggs for breakfast yesterday”  

, is true regardless of the reversal of normal temporal orientation, 

provided only that it does rain today and that I did have eggs for 

breakfast yesterday. Indeed, for Aristotelian implication it is 

sufficient that  eggs were on the menu of yesterday’s breakfast!  

 That these observations are not trite can be seen from their 

relevance to the theory of questions. There are  two kinds of 

questions: Logical Questions, which are addressed to “the 

universe” and thus have atemporal answers ( such as “What are the 

first four places of the decimal expansion of the square root of 2?”) ; 

and  Contingent Questions, which do not have answers until the 

respondent answers them.  

 Example: I arrive at the opened door of a house, and shout  

“ Is anybody home?”  This has various answers. Note that “Yes” 

and “No” give the same information, as does “I’m coming”, or “I’m 

not receiving visitors today.” However silence   has two 

interpretations : either no-one is at home, or the respondent has used 

his freedom of choice   to remain silent . The interrogator cannot tell 

which of the two alternatives he is being presented with. 

 From the viewpoint of the interrogator this kind of question 

exhibits a temporal dependence, akin to causation in the natural 

sciences. That the question is asked before   the answer is given is 

fundamental. The situation is analogous to that of the 

measurement problem in Quantum Theory: that the measurement 

is made before    the data is recorded establishes a fundamental 

asymmetry, which is not present either in mathematics nor in 

classical theoretical physics.   

 Mathematics is acausal by its very nature. The suitability of 

mathematical frameworks for the modeling of phenomena is due to 



its acausality. If mathematical deduction were space-time 

dependent it could hardly be of much use to science. 

 (ii)Reconstructive Science  
History, Geology , Paleontology, 

Archaeology    
 Sciences with a predominantly historical emphasis employ 

back-branching models and other forms of reconstructive 

causation, Their conceptions are generally much broader than the 

indirect proof of mathematics. It sometimes  happens that an 

historic reconstruction leads to a unique scenario for some past 

event,  the so-called  “smoking gun”. In practice, researchers in 

reconstructive science are permitted considerable leeway, when  

not laxity, in the multiplication of alternatives. There are  many 

important questions for which definitive answers are never  found.  

Either the evidence is too difficult to ferret out  with current 

limitations on  technology, or it  has been permanently destroyed, 

by death, fire, erosion, etc.  

 Who were the first hominids? Were the dinosaurs birds or 

reptiles? What brought about the collapse of Mayan civilization? 

What are the origins of the Basque language? Did Mileva Maric 

give Einstein his ideas on relativity? Did Sally Hemmings tell 

Thomas Jefferson what to write in the Declaration of 

Independence?  In  reconstructive science one can expect to  

encounter a climate of contention,  that can and frequently does 

turn nasty, centered around equally defensible models for some 

inaccessible past event.  

 Although many of these controversies do get resolved 

through new  discoveries, the antinomies inherent to all  

reconstruction of the past  will always remain . The most basic of all 



is, of course , the antinomian couple:  “The past does/ does not  

exist”   . In terms of its  practical consequences the debate over 

Uniformitarianism versus Catastrophism   , of which Geology is the 

paradigm, is the most important.  

 Uniformitarianism   is an article of faith without which there 

can be no reconstructive science. It has two forms: the first asserts 

that  it is possible to reconstruct the past by assuming that the laws 

of nature are time independent, and were therefore the same in the 

past as they are today.  A more specific  form, current in Geology 

since the work of James Hutton in the 18th century, and William 

Whewell  and Charles Lyell in the early 19th, is that the processes 

at work on the earth in the distant past are still present today. Even 

more restrictive is the view  that none of the geological formations 

of the past were radically different from those in today’s world. 

Today there is too much evidence in the  geology textbooks  to give 

this  credence: apart from the now well-established Alvarez 

Asteroid Hypothesis, it is believed that the Mediterranean Sea  

periodically becomes an immense dehydrated trench, with a drop 

between it and the Atlantic Ocean  thousands of metres deep. No 

such formations exist on today’s earth .  

 Catastrophism   comes in many variants. At its extreme fringe 

one finds the Creationists, who insist that we must all believe that 

the universe was formed by divine ukases  exactly as stated in the 

Old Testament. The more scientific form of Creationism derives 

from George Cuvier in the 19th century: differences in fossil 

formations at various stratigraphic levels are  due to autonomous 

acts of creation preceded by total cataclysms.  

 The catastrophism that one finds in the Inflationary scenarios 

of Alan Guth and others, simply claims that there are features of 

the early universe  which require the assumption  that certain  past 



events ( the near instantaneous cooling of the universe), and the 

causes for these events ( the “Higgs field”) have permanently 

disappeared from view.  

 Explanation by catastrophe has always been popular  in 

Geology: Earth collides with Venus ( Velikowski) ;  Ice Ages are 

produced through spontaneous  flip-flops of the Earth’s poles  

( Brown) ; life arrives on this planet through its colonization  by 

charioted aliens ; ( Von Daniken);  the sudden submergence of  

entire continents ( Plato).  

 More credible catastrophist hypotheses are usually related to 

the Great Extinctions, collisions with meteors and asteroids, and 

gigantic volcanic eruptions. The problem with most catastrophist 

scenarios is that they tend to  elaborate considerably over a paltry 

database.  Many uniformitarian fiats suffer from  similar defects : 

one thinks of all those “isotropy”, “homogeneity” , “uniformity” or 

“steady-state” principles which claim some sort of scientific 

foundation, but which are really the expression of the need to 

believe  that the universe is not so unstable as to make science 

inconceivable. 

 Cosmology is much more accommodating to catastrophes 

than Geology. Geologists are hampered to some extent by not 

being able to appeal to the mathematics of 4-dimensional 

differential geometry, by which one can conceptualize pictures 

that no-one can ever hope to see, even in  the mind’s eye.  Lacking a 

mathematics which enables one  to conclude anything without 

committing oneself, geologists are obliged to be more cautious. 

 A dynamic tension between Uniformitarian and  Catastrophist  

philosophies  lies at the vital core  of  every  reconstructive science .  

To understand why this is so  requires that we conduct an 



examination of the distinguishing features of the two  temporal 

categories of the  Unknown : Past and Future.  

 Everyone  recognize that the methods appropriate to 

reconstruction are not the same as those applicable to  prediction: 

the verification of a  reconstructive hypothesis depends on 

predictive procedures , not conversely.  

 All theories are tested or falsified by the arrival of some 

observable, predicted, ideally reproducible,  event. If the event is 

sui generis  ,  one of a kind , then the circumstances that make it 

possible must be so fine tuned  that  alternative explanations  have 

vanishing probabilities . This is almost always the case in sciences 

such as archaeology and history, which often depend on unique 

documents or structures. Sometimes homogeneity principles 

substitute for reproducibility: millions of fragments of Greek vases 

have given us a very good idea of how such objects were 

manufactured.  

 In the presence of evidence that contradict them, such 

theories  will be modified or abandoned. Faced with equally 

fortified alternative explanations  it is comforting to believe that 

new discoveries must eventually dispose of all but at most  one of 

them. 9 Since in practice the  hypotheses surrounding a  finding are 

not mutually exclusive, the final consensus will usually be some 

combination of all of them.  

 In any case the verification of any reconstructive hypothesis 

must of necessity be very indirect. It consists of two phases:   

 ` (1) A model of some region U of space, in some interval 

T of past time , may produce consequences for the present that one 

can look for. If the Native Americans did in fact cross the Bering 

Straits from East Asia many thousands of years ago, we should find 
                                            
9Although  Villon’s “Where are the snows of yesterday?” still awaits an answer. 



genetic similarities between , say, Tibetans and Navahos;  which  

we do . We expect that additional data from the Hubble Telescope 

will help us to decide between a number of models of the early  

universe.  

 (2) One also looks for preserved objects   to fill in the pieces of 

a reconstructive puzzle. The hypothesis that Richard the Second 

was responsible for the murder of two children who obstructed his 

way to the English throne  ,  (  a view contested in Josephine Tey’s 

detective novel, “Daughters of Time”) , was much strengthened by 

the discovery of  skeletons in the debris of a staircase in the Tower 

of London that had, with a high  probability, belonged to them .  

 Two principles are present in any attempt to put together a 

credible account of past events: 

 [ A.] Things ( distinguishable entities)  don’t 
change unless there is a reason for them to change. 
 [B.] Things  don’t stay the same unless there is 
something to prevent them from changing.  
 We need [A]  to give meaning to  the expression,  “preserved 

object from the past”. Without it  there could never be any grounds 

for saying that anything ,  from a Leakey skeleton to a Dead Sea 

scroll, was a link to the past. 

 [B]  is invoked for justification of the various methods of 

dating  objects that were presumably created at some time in the 

past ,  potassium-argon , carbon-14 , dendrochronology , 

glottochronology, Cepheid variable stars ( also used  for gauging 

distances  because of the universal value of the speed of light),   or 

by the indirect association with other things in the same 

environment which can be dated by these means.  If Permanence 

were not embedded in Change , there would be no way to compare  



the scientific value of Lucy’s skeleton  to  that of Piltdown Man, or  

that of a Dead Sea scroll to  a Xerox of a Dead Sea scroll. 

 Example:   In the New York Times of February 14th, 1985, it 

was reported that  a bundle of old letters was discovered under the 

staircase of a house that once belonging to Abraham Lincoln’s son. 

Most of them are copies of letters one has reason to believe were 

written by him. In assessing the worth of this discovery many 

assumptions are made: 

 (a) Stability of language : American English has not changed 

so drastically  that significant words or phrases have become  

totally misleading.  

 (b) That certain universal criteria of truthfulness will enable 

competent historians to judge when the  author  was telling the 

truth or when he was lying.   

 (c) That the entire cache is not just somebody’s hoax. It is 

known that hoaxes don’t have to be very clever to succeed: van 

Maegheren’s faked Vermeers , dozens of works falsely attributed to 

van Gogh or Haydn, Piltdown Man , the Shroud of Turin, etc. 

 (d) The existence and reliability of independent means of 

dating paper and ink,  the handwriting, mouse droppings, and so 

on.   

  (f) Comparative dating by allusions to contemporary 

events; checking for anachronisms, ( a method that quickly 

disposes of most art forgeries) .  

  That these letters do indeed constitute a solid link with the 

past can therefore be asserted only in a context saturated with 

theoretical considerations. Was Lincoln’s son as truthful as the 

legendary  Honest Abe? Since the writer of a letter may have as 

many reasons  for lying as for telling the truth, the long term effect 



of this discovery may be disinformative, temporarily ( or 

permanently! )  increasing our ignorance of the 19th century.   

 To summarize: confirmation of a reconstructive hypothesis 

requires not one but several acts of faith. Among them is the belief 

that there exists evidence which has mysteriously escaped the 

ravages of time, that will eventually turn up to cast the deciding 

vote between equally likely hypotheses. If such evidence does 

surface, it will itself have meaning only within a framework of 

many theoretical assumptions.  

 For centuries it was felt that certain passages in the published 

versions of Bach’s chamber music ( notably the orchestral suites)  

were wrong. Professional musicians were afraid to tamper with 

them.  Autograph manuscripts were  recently  discovered that 

confirm what the more perceptive and independent-minded had 

always maintained. A pretentious mystique surrounds the works 

of any great artist, and acts of true bravery are required of anyone 

who asserts  that what we possess may not always be the just 

expression of  the artist’s intentions. The public for art  directs its 

critical judgment to the  task of  penetrating  into the deeper 

meaning of  scripture , whether it be a Brandenburg Concerto, a 

play of Shakespeare’s. or an  alleged Rembrandt .  Thus, both 

predictive and reconstructive models depend on future evidence .It 

is because of the complementary/ contradictory  principles [A] and 

[B] that there will always be a Uniformitarian/Catastrophist 

controversy at the heart of all 

reconstructive science. Note that a major discovery of new evidence 

from the past generally produces  far-reaching disruptions within   

any reconstructive science. Catastrophism may or may not 

characterize  the content of a reconstructive  science, but it always 

characterizes its own history!   It is incautious to set  too much store 



by  models which are too uniform. New evidence has a way of 

demolishing established theories with terrifying regularity.  

 This is also true in physics and the other hard sciences; yet  

there is no comparison between the ways in which Einstein’s 

theory of gravitation supercedes Newton’s  theory of gravitation, 

and  the way in which, for example,  the discovery of Viking 

artifacts in New England completely demolishes the theory that 

Christopher Columbus was the first European to visit the New 

World. Since there is a high degree of catastrophism in the daily 

conduct of the reconstructive  sciences, one should  always allow 

for a degree of catastrophism in the theories themselves.  

 At the same time, if everything has got to be explained by  

miraculous interventions or random occurrences, the field quickly 

degenerates into a mass of ad hoc  hypotheses,  ceases indeed to be 

a science. If the processes at work in the past are as inaccessible to 

us as the events they are marshaled to explain,  there is the risk of 

setting up  an indefinite regress of explanation. Hypotheses that 

do not, in one way or another, have their roots  in the present, lose 

all scientific worth. 

 Why does the sun shine?   God created it. How did he create it? 

He said, “Let there be light!” Why did he decide to say that?    

Because he was “well pleased” with Himself for doing so. Each 

‘explanation’ in the chain gets pushed further back in its degree of 

inaccessibility.  We encounter  no  gods  walking around today  

who can create suns by saying “Let there be light!” We therefore 

have no way of knowing if these activities  gives them pleasure. 

Inaccessibility is being  “explained” by further inaccessibility.  

 In other words, principle [A]“Nothing changes without a 

reason. ”     opens the door for potential ‘explanations by 

catastrophe’ whenever continuity with the present is not 



rigorously established. Likewise principle [B]  stresses the 

necessity for uniform processes that guarantee the invariance of 

objects, structures and natural forces from one period to the next.  

 “Creationism” may well be bogus science, not even a science 

at all, yet whatever value it does have lies not so much in its 

fanciful Biblical reconstructions, as in its critique of the fatuously 

“smooth”  evolutionary chains advanced by the paleontologists. 

Working in another reconstructive science, archaeologists are only 

now beginning to look at the way global weather patterns have 

brought about seemingly disparate historical events all over the 

world. One contemporary theory relates the rise of Islam, the 

appearance of bubonic plague, the destruction of Aztec temples, 

crop failures around the world and the Avar invasion of Europe to 

the weather conditions created by the gigantic explosion of 

Krakatoa in the 7th century. Such a theory combines 

uniformitarian with catastrophist elements.  

 The Uniformitarian/Catastrophist antinomy is inherent to 

reconstructive science. Dogmatism on either side of the divide  is 

inadvisable.    

(iii)Descriptive Science   
Journalism, Meteorology, 

Structuralism  
 The excessively reductive, yet convenient, representation of 

Time as  a 1-dimensional Euclidean manifold imposes a natural 

subdivision at each instant into Past, Present and Future. There are, 

in addition, two forms of the present: the abstract or relative 

present used in physics, and the absolute or real present of 

conscious awareness. 



 The subtleties of the  abstract present    , neither fully present 

nor fully past, are to be seen in the multitude of tenses, such as 

those expressing an action begun in the past and on-going ( “I 

have been watching the cows” ) , or begun and completed in the 

past , ( The perfective: “The roast is burnt”, as opposed to “The roast 

was burned”), or simply past with no indication as to its 

continuance ( “He sat on the chair” - he may still be sitting there for 

all we know ), or on-going but interrupted ( “I was seeing the light 

when you walked into the room”) , along with combinations of 

these.  

 Written French also uses an “absolute literary past”  , a kind 

of timeless time appropriate to fiction : Il observa les fleurs sans 

regret .  “He was observing the flowers without regret ”; All tenses, 

including “He observes the flowers...”, and “He observed the 

flowers” are contained in this expression by being placed in the 

realm of the imagination.   

 The real   present is the present of individuated 

consciousness : I am alive now,  and I am aware of it . The  “now”  in 

which I am writing these sentences is assumed, perhaps falsely , to 

be the same as that of all other persons sitting in or walking 

around in the cafe-bookstore where I happen to be working . It is 

the same ‘now’ which  one used to assume  could be objectified as “   

9:37 Junes 17,2000   ” throughout  the entire cosmos, yet which,  

since the appearance of the Theory of Relativity   has become  an 

open question. Is my subjective present identical with yours? Is 

the sum total of all subjective presents identical with an objective 

present? And so forth.  This essay evades all such issues in by 

restricting its focus  to the abstract time of science. This overly 

simplified but useful fiction is reflected in the way in which one 



may classify all sciences as Reconstructive, Descriptive and 

Predictive.  

 Descriptive sciences likewise divide into pure and applied . 

One finds  pure and applied mathematics, theoretical and practical 

economics, descriptive and Chomskyian linguistics 10  , the theory 

of disease and the description of disease , etc. Among the applied 

descriptive sciences on can include Journalism, Anthropology, 

Classificatory Biology, Meteorology, etc.  

  Even as Mathematics is an entirely descriptive pure 

science,  Journalism is an entirely descriptive applied science. 

Mathematics is atemporal,  Journalism dedicated to the momentary  

description of transient events. What links these two fields is that 

neither of them makes predictions or incorporates causality.Of 

course there is lots of bad journalism, infected with vindictive 

moralism, which assigns blame with free-wheeling impunity. The 

best journalists record the facts as they occur, in such a way as to 

permit the reader to draw his own conclusions.  Although the  

conjectures raised by mathematicians do resemble the predictions 

of physics, refutation by contradiction is not quite the same as 

refutation by evidence from a failed experiment. 

  Every science  partakes in various degrees in  all 3 temporal 

modes. The focus of a descriptive science  is on the accurate 

description of present or presented phenomena,  pure diagnosis, 

setting aside all  historical speculation  or future consequence . 

Speaking informally, one might suggest that Reconstruction 

makes use of the mathematics of modal logic, Prediction the 

mathematics of analysis and probability, and Description the 

relational structures of Algebra: lattices, groups, partitions, etc. 

                                            
10 Which I happen to believe  is fraudulent;  yet  its goal is to turn Linguistics into a 
theoretical science, with “language” subject to mathematical laws 



 All of the disciplines that flourish under the vague label of 

“Structuralism” are descriptive. Simply described, structuralism is 

a crash program much in vogue in the 60’s and 70’s, that aspires to 

raising the  immense accumulation of uninterpreted data in the 

warehouses of the human sciences, ( Anthropology, Linguistics, 

Psychology,  Sociology, Political Science  ) to the level of pure or 

theoretical science. The search for universal structures in human 

institutions and artifacts may be seen also as a search for the 

appropriate causal algebras to be employed in back-reconstruction 

and prediction.  

IV. Branching Causality  
 Branching Causality arises when :  

 (1) A decision in favor of one out of several  proposed models 

of the past  cannot be made on the basis of available knowledge.  

 (2)Probabilities can be assigned to these models 

 (3) It can be rigorously demonstrated, or is highly likely that 

in the time at one’s disposal, it will not be possible to set up a 

procedure for selecting a unique past from the options available. 

This can mean several things: 

  (a) The observer disturbs or destroys the observed in the 

course of the experiment, as in 

   (i) Archaeological excavations which destroy their 

    sites 

   (ii) Biologists who kill their specimens 

   (iii) Particle physicists generating quantum   

   uncertainties. 

  (b) Time has destroyed too much evidence to allow for a 

    unique reconstruction: 

   (i) Erosion 

   (ii) Death of witnesses 



   (iii) Information destroying processes in the   

   formation of Black Holes 

  (c) The requisite knowledge is intrinsically 

inaccessible,     hence unknowable 

   (i) Cosmic censorship inside a Black Hole 

   (ii) Schrõdinger’s Cat  

   (iii)  Life after death, or before birth 

 Back-branching causality appears explicitly in Quantum 

Theory in many contexts. The classical picture of von Neumann of 

the “collapse of the wave packet” assigns definite probabilities to 

each value in a  spectrum of eigenvalues. All of them are assumed 

to “exist” before any observation is made. 

 The reductive simplicity of quantum physics cannot serve as 

a model for human history. Strange, is it not, that although a 

historian must be committed , even more than a physicist, to the 

belief in the past’s uniqueness, it is he, more than any other 

scientist, who must keep alive all the alternative interpretations of 

past events? 

 Persons who care to do so are free to speculate whether 

branching causality exists only in the representation spaces, or 

reflects some intrinsic structure in real time. Can the present really 

be the product of a collection of independent pasts? In sciences 

such as history, archaeology or paleontology one is frequently 

obliged to represent the state of one’s knowledge as a collection of 

autonomous pasts. The theoretical belief in a unique past must 

often be abandoned in practice.  

 Let’s imagine that Chaucer and Froissart somehow got 

together in France during the Hundred Years War of the 14th 

century.  Chronicler and fiction writer conspired to play a joke on 



mankind by concocting an  account of a ferocious battle  set near a 

little village named Agincourt.  

 Though this makes  the battle of Agincourt pure  fiction, 

belief in its reality has had an immense influence on subsequent 

history, from Shakespeare to Winston Churchill to Desmond 

Seward to  Barbara Tuchman. Isn’t that enough? Must  historians 

maintain that a real battle must leave  consequences visible today? 

Yet how otherwise does one distinguish a battle invented by 

Froissart from the ones he  actually witnessed ?  Unlike the 

situation in physics and chemistry , one can’t experiment with 

history. 

 Since the “past” is always a back-reconstruction, back-

branching causality can never be eliminated from the 

representation spaces of the reconstructive sciences.  

 It is a commonplace of detective fiction, and all too often of 

crime in the real world, that the criminal will murder his victim for 

the sole purpose of rendering a unique reconstruction of the crime 

impossible. A strict Lagrange-Hamilton  description of cause and 

effect via local determinism may exist in that case  only in the mind 

of the perpetrator. For all others,  judge, jury, lawyers, journalists 

and the public,  a scenario of  branching causality  leading to and 

from the event may be the best one available. 

 Note  that there is nothing within even the strictest 

formulation of classical causality that guarantees that enough 

information must be left lying around to allow us to make a 

unique reconstruction of the past. The local determinism of the 

Lagrange-Hamilton paradigm implies  that different pasts must 

result in different presents. It does not give us any help in  

reconstructing that past. 



 Indeed, there is little  in our experience to cause us to believe 

that the past has to be unique. If two entirely different pasts can be 

shown to produce virtually identical presents, why do we need an 

axiom to tell us that only one of these must be correct? For the most 

part causality is only concerned with future connections: a unique 

future must come out of a unique present. One does not even have 

to assume that one is living in a unique present: all that a workable 

axiomatic framework for physics has to assert is that given   a 

unique present, then a unique future is inevitable. Mathematical 

frameworks for   back-branching causality can be developed 

without consideration of  the philosophical issues concerning 

either the uniqueness or multiplicity  of the past.  

 One of the things which Thermodynamics seems to be saying 

is that the past, no more than the present, is not static: it, too, can be 

lost. Since the ideas of entropy and of a measure of information 

content are closely related, it is possible to interpret the dissipation 

of mechanical energy into non-reconvertible heat as the 

destruction of knowledge, that is,  loss of the past. A consequence 

of the existence of inaccessible energy is that the calculation of the  

coefficients of local determinism, ( whether by differentiation or 

other means) can only be approximated. Thus, both past and future 

thermal trajectories are of necessity branched. This may in fact be 

the real meaning of the concept of “dissipation” .  

  Similar observations can be made relative to the 

Heisenberg Uncertainty Principle. Any real or conceptual physical 

experiment in which the observer is placed within the system in 

isolation   ,  leads unavoidably to perturbations in all measuring 

processes. As in quantum theory, these find expression in a 

multitude of pasts converging causally on the present.  



 The determination of stellar distances requires a form of 

branching description that is intrinsic to the character of 

Astronomy as a science. In the absence of compensating factors, it is 

formally impossible to distinguish a bright star which is very far 

away from a dim star that is close at hand. Until more external 

evidence becomes available, all possible distance determinations 

must be kept in the model, and there is no a priori reason to believe 

that such external evidence will show up.    
(a)  Mathematical  Models   

 Fix some moment of time T > 0 away from the temporal origin. 

Let t stand for the quantifiable time  variable,  P the class of all 

real-valued patterned functions defined on the interval I =  [T , �  )  .  
Let Λ   be the sub- algebra of unbraided patterned functions, that 

is to say, all patterned functions f defined on I which allow one to 

make a unique back-reconstruction from T to the origin:  

f ,g !"# [( f (t) = g(t), t $ T )# ( f (t) = g(t), 0 % t % T )]  

Choose f ε  Λ    , and assume that f is not pathological. Then it comes 

from a minimal associated function A , and minimal section point 

set, S. Since f is unbraided, the domain of A can be uniquely 

extended back from T  to 0 . Given the function A , one can combine 

it with  arbitrary section point sets Σ   , to derive a collection of 

patterned functions Ω  all derivable from the same associated 

function, A .  

 Some of the patterned functions derivable this way may  be 
braided. However, there exists a class of patterned  functions Λ* , 

which are generated from associated functions such that none of 

the patterned functions derivable from them will be braided. We 
will say that the functions in Λ∗  are  absolutely reconstructible  , 

whereas those in Λ    will be called, simply,  reconstructible  .   



 Let  f ε Λ∗    and  examine the behavior of g = f(1/t ) around 

the origin in the interval (0, 1/T  ]  , it is possible to reconstruct all of 

g from knowledge of its shape in this interval. From that we can 

reconstruct all of f.  And from f we can derive a unique associated 

function A, provided the following list of conditions are satisfied: 

(i) g is non-constant on any interval 

(ii) f = g(1/t ) is uniformly continuous 

(iii) The associated function is also continuous 

Among all possible candidates, we naturally select the with the 

minimal pattern set.  
(b)  Examples o f Models  for  Branching 

Causal i ty    
 Construction A:  

  (1) “Time” begins at an essential singularity - a “Big 

Bang”. 

  (2) This sets up a point-source algebra; The entire future 

can be derived from calculations made in the neighborhood of that 

origin.  

 (3) Until time T >0 , one is dealing with a phenomenon 

combining a pair of criss-crossing branches , or braids. 

 (4) At T  the two branches merge into a unique causal flow, 

unto eternity 
 (5) In the region [T , ∞  )  causation obeys  Lagrange-

Hamilton local determinism : any neighborhood around any 

instant    contains complete forward predictive information. 

 Start with any analytic, non-periodic function defined over 
the positive temporal line  y = γ  (t ) ,  real and bounded away from 

0 .  Let θ  (t)  = γ  (1/t ) . Then the arc of γ     from some fixed point a, 



to infinity, will be in 1-1 correspondence with that of  θ   from 1/T 

to 0 .    

 Let U and V be distinct section point sets 
U = {0,a, s1,s2, s3, ....,sk , ....}

V = {0,a, r1,r2 ,r3, ......,rk , ....}
 

 Let α   be the  associated function for γ   . Using U and V as 

section point sets, we form two patterned functions: 
P1(! ,U) ; P2(!,U)   

 Then the functions 
Q1(t) = P1(1 / t )

Q1(t) = P1(1 / t )
 

will satisfy the above recipe for simple branching causality: 

 (i)    Since both P1 and P2 are unbraided, they model strict 

causality outwards from the essential singularity t =0 , of Q1 and Q2 

.  

 (ii) Between t =0   and t =T  , Q1 and Q2 form independent 

paths, alternately recombining and separating.  

 (iii)   For t>0, they merge into a unique flow 
 (iv) In the region [ T , �   ) , Q1 = Q2 = α  (1/t ) is analytic: if f has 

no singularities from 0 to  T , then  α (1/t ) will have no singularities 

from 1/T  to   ∞   , any t > 0 .  

Illustration : 
 For associated function we choose α (x) = sin(x) ; T = 2π  

The two section point sets will be given by the roots of the 

equations  
U(t) = t1 sin( 2t) + sin( 3t)

V(x) = t2 sin( 5t) + sin( 7t)
 

  t1 and t2 are calculated from the conditions: 



U(0) = V (0) =U(2! ) = V(2! ) = 0;

t1 = "
sin(2 3! )

sin(2 2!)
,t2 = "

sin(2 7! )

sin(2 5!)

 

 The “inverted argument” functions  
Q1 = P1(1 / t;!;U),Q2 = P2(1 / t;! ;V )   

are continuous  everywhere and analytic everywhere save at a 

countably infinite set of discrete points converging to the origin . 

Construction B :  
Branching Causality  

Converging to a  
Future   Essential Singularity 

 (1) From  time t = 0 ,  there is  a unique causal trajectory  up to 

some fixed moment T.  

 (2) Before the zero-point, there were a pair of  braids L1  , L2  

each of them converging with local determinism  fashion to the 

same forward arc.  

 (3) After t = 0 the system does not obey local determinism. 

However, as one approaches T it is possible to reconstruct the path 

with ever greater accuracy.  

 (4) Complete knowledge of the shape of the world-line may 

be obtained by calculations made in any neighborhood of the 

future terminal point T . One can thereby reconstruct not only the 

segment from 0 to T, but the two braids from zero to minus infinity.  

 (5) At the moment t =T the system collapses into an essential 

singularity.  

 This  recipe can be modeled  by braided pairs of patterned 

functions. 

 

 



 

 Let  P1 , P2 be a pair of braids derived from an analytic non-

periodic function Ζ (t ) in the manner described in the example on 

page  14 . Keeping with the same notation, the front section of P1 is 

designated A, that of  P2 is designated B. We require that the 

domains of  A and B   have  the same length, L. Define  

 

Q1 = P1(!
1

(t !1 L)
)

Q2 = P2(!
1

(t !1 L)
)

 

 These functions in combination reproduce all the features of   

the recipe: 

 
 

 (1) The  branches merge at t=0 into the “inverted argument 

form” of the congruent portions of the pair of braids P1 and P2  .  

 (2) In the inverted argument form, the two braids translate 

back into independent branches from 0 to   - �  .  
 (3) There is an essential future singularity at t = 1/L 

 (4) As one approaches this singularity, and more information 

becomes available to us, one can back reconstruct over greater 

reaches of the past with greater accuracy 



 (5) If one could somehow compute from the future point to 

any other point close to it in time,  the complete trajectory of the 

system for all past time would become known . 

 This picture has much in common with the way real science 

advances . Initially  one knows nothing about the pas.  Knowledge 

about what happened historically accumulates gradually as one 

advances into the future.  

 Likewise,  predictions  concerning the future only take one 

forward a short distance in time. One  would have to go all the way 

to the end of time before really understanding everything that is 

happening in one’s present environment . As one goes further into 

the past, the number of branching or alternative scenarios  

increases: the braids become frayed in proportion to the distance of 

past events from us.  

  We see that this picture is, in certain respects, more faithful to 

our state of knowledge at any given moment, than the fiction of a  

smooth, uniquely determined scheme of things that we all would 

like to imagine really exists over the universe. . 

 The employment  of braided and unbraided patterned 

functions allow one to model an enormous variety of branching 

models: point-source causation, strict Lagrangian or substrate 

causation, back-branching causation, etc. By investigating larger 

classes of automorphic functions, and employing the full diversity 

of coding schemes that are totally or partially back-reconstructible 

from key moments, one should be able to generate useful models 

for every imaginable form of universal causal structure.  
❆❆❆❆❆❆❆❆❆❆❆❆  
❆❆❆❆❆❆❆❆❆❆❆❆  
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 Each seed injects a new causal process into the flow. This may 

cancel or overshadow all previous inputs, or become integrated 

with them. The process is analogous to the way in which a new 

instrumental sound introduced into the texture of a symphony 

may blend with the flow, or soar above,  dominate it, or perform a 

solo cadenza while all others remain silent.  When the new input 



only makes a contribution to the whole without supplanting 

them,  predictions of the future course of the system demand 

knowledge, not only of  the algorithmic process for extracting 

causal information from a specific seed, tn , but information about 

the application of such procedures to all previous seeds tn-1 , tn-2 

,......  

 This conception has a close correspondence with our daily 

experience. Indeed this is the way   science works in practice.  For 

example, no competent historian would claim to explain the 

political geography of the world in terms of the outcome of a single 

war. In his quest to understand and the national boundaries of 

today’s world , he would study all wars and treaties  as far back as 

necessary or reasonable. He would recognize that the Roman 

Empire, the Holy Roman Empire, the Hundred Years War, Thirty 

Years War, Napoleon, World War I and II, etc., have all made their 

contributions to today’s political landscape. Eventually he would 

come to the understanding that  the fictive homogeneity which 

one attributes to the nations of, say, Western Europe, ( those whose 

boundaries have not changed significantly since the decade after 

WWII) , is no more than a convenient illusion . Active separatist 

movements exist today in Northern Ireland , Spain, France ( the 

Bretons), Belgium and elsewhere. As for Eastern Europe, a country 

such as Yugoslavia never was anything but an idea constrained by 

a label. As of this date its disintegration is very much with us.  All  

national boundaries of all countries are the residues and 

reflections of previous wars,  invasions, explorations and  political 

negotiations .  Point-source causation is the only mode of 

determinism suitable for historiography.  



(a) Autonomous and Determinable  
Seeds 

 Point source causation always presupposes a set of privileged 

moments of emanation or seeds, at which some kind of Lagrangian 

computational process may be applied for predictive purposes. 

Seed moments are of two kinds 

  A. Autonomous seeds, which are not computable or 

predictable from previous collections of seeds. 

  B. Determinable seeds, which are determinable from 

computations on one or more seeds in their past.  

  In most situations of interest ,  seeds manifest 

themselves in the form of explosions   :  essential singularities of 

one or more of the measurable observables.  As a general rule,  

although there are  algorithms for deriving the world line of a 

system S  from their neighborhoods , knowledge of the 

configuration of   S at those moments is unattainable.   

 The standard model of the Big Bang is the paradigm for the 

explosive form  of point source causation  . One may also site the  

Hawking model for the decay of a Black Hole from the moment  

when it becomes isolated  from the rest of universal causality.  The 

Hawking-Penrose Cosmic Censorship Hypothesis states that no 

acausality can radiate from the interior of a Black Hole. However, 

2nd quantization Hawking radiation is in effect a kind of 

radiation of autonomous causation   from its surface.  
 “ The singularities produced by 
gravitational  collapse occur  only in 
places,  like Black Holes,  where they are 
decently hidden from outside view by an 
event horizon. . . . i t  protects observers who 



remain outside the Black Hole from the 
consequences of the breakdown of 
predictability that occurs at the 
singularity. . . .”   

 Pg. 88 A Brief History of Time  ; Stephen W. Hawking, Bantam 

Books, 1988 

  The  conditions for point source causal algebras are :  

 (i) The possibilities for constructing the world-line from local 

information, are restricted to a discrete set, fine, countable or 

unique, of seeds. In general one requires information about the 

configuration of the system in all seeds proceeding the one under 

consideration. In teleological models, which are not strictly 

Lagrangian, ( as all such neighborhoods are intervals of infinite 

length )  information obtainable from neighborhoods around 

eternity, or the end of time, allow one to back-reconstruct a world-

line.    

 (ii)  Events separated by a seed moment are not causally 

connected. For events between  two seed moments there may be 

some small-scale connection  to refer back to the left-hand seed to 

relate them causally.  

 (iii) From  any instant τ   outside  Ω   there is no Lagrangian 

procedure for constructing the world line beyond the immediate 

neighborhood of that instant.  

 Examples from daily life are legion. Consider the 

correspondences in the vocabularies of two cognate languages, 

such as Spanish and French. Beyond a certain point it is not 

possible to establish their direct connection save by appeal to their 

parent source, which is Latin. 



 Micro-organisms like amoebae which reproduce by splitting, 

materially represent the sorts of natural branching tree diagrams 

associated with point-source causation. 

 If , as is believed, our universe originated in a great explosion, 

the reconstruction of its history from the present back to the Big 

Bang isn’t possible without some direct evidence from the 

neighborhood of that event. That this is possible to obtain is due 

to the peculiar relationship of time to distance in a relativistic 

universe. By looking ever further out in space, say with the Hubble 

telescope, one also looks back in time, However, there is absolutely 

no way one can predict what one will see at any distance beyond 

that which has already been penetrated; and what one does see 

must materially alter ones picture of the entire evolution of the 

cosmos up to the present moment.  

 Point-source algebras are most appropriate for the modeling 

of explosions. A terrorist plants a bomb in some office building, 

which  explodes with terrifying force. Someone situated at some 

distance from the explosion,  who is hit by debris  at time t1   

cannot say , from any amount of analysis of this debris,  anything  

about whatever  may be coming his way at  a later time t2 . 

However, from the viewpoint of the terrorists, knowledge of the 

composition and capabilities of the bomb , the character of the 

structure being destroyed, and the way in which the bomb was 

placed within the structure, has given  them quite a lot of 

information about the way in which the debris will be scattered 

over time and space. 

 Another obvious area for the application of point-source 

algebras is Catastrophe Theory. The localized differential topology 

on one of the  sheets of the 3-D surface of a standard bifurcation 

catastrophe gives no information about the structure of the flow  of 



world-lines on any of the  other sheets. But study of an 

infinitesimal neighborhood around any of the bifurcation 

singularities will provide complete causal information about the 

unfolding of events on all the sheets emanating from it.      
 (b )   Computation Schemes for  Essential 
Singularities  

 Let Π(t) be bounded and periodic with period ω   = 1 for 

convenience . Π  is assumed continuous . Also , Π(t)  �  0 for all t.  

Under these conditions , which are easily generalized, we will 

construct a causal algebra consisting of agents of the form Λ(t) = 

Π(1/t) .  

 Three methods are presented  for assembling a table of 

numbers, computed in the neighborhood of the origin, by which 

one may construct the arc of  Λ(t)  for all positive t.   All of them 

derive from the following observation: 

 Let {tj } be an indexed,  countably dense subset of points in 

[0,1] . Since Π  has period 1, we have for all pairs of positive integers 

N, j :  
!(1 N + t j ) = "(N + t j ) = "(t j ) = !(1 t j )  

Therefore, by making N sufficiently large so that 1/(N+tj ) is in the 

interval (0,ε  ), we can, from the values Λ  in that interval, calculate 

the value of Π(tj) .   

 Next let N = j, and let Δ    be the collection of values ,{ 

1/(N+tN) }.  Given ε  , only a finite number of the elements of Δ  will 

lie outside the interval (0,ε  ) . Therefore, evaluating Λ  at the points 

of Δ  creates a countably dense set of ordinates for Π(x) in ( 0, 1)  . 

Since Π  is assumed to be continuous, we thereby obtain sufficient 

information to compute its entire arc.  



 METHOD 1: Enumerate all the rationals in the 

interval (0,1) . For example one might use the Cantor J-function. If r 

= a/b, then  

J(r) =
(a + b)2 + 3a + b

2
 

 METHOD II: The inverse binary method. Let B be 

the collection of all binary decimals of finite length in (0,1) . If  b ε 

B , then we may write it as  
b = 0.E

1
bE
2
bE
3
b .....E

k
b ,with

Ej
b = {

1
0
, j ! k, and

Ek
b = 1

 

 Under this representation of b, define the  “reversed binary 

integer”, b*, given by b* = Ek
bE

k!1
b E

k!2
b .....E

1
b , interpreted as a 

binary integer. The collection of integers {b*} is Z+ . This sets up a  

natural 1-1 correspondence between the integers and a countably 

dense set in (0,1) .  

 Define  τb = b + b* , and  σb = 1/ τb  . Referring back to the 

functions Π  and Λ  , we have Λ ( σb  ) =Π  ( τb ) = Π(b) . The values of 

b* can be used to index the set { σb   }. As this index augments, the 

finite binary decimals sweep back and forth across the unit 

interval in a net of increasing refinement: 

EXAMPLE:  



!(x) = Sin(x);"(x) = Sin(1
x
)

b b * #b $b "($b) = !(#b )

1 1
2

3
2

2
3 0.99

2 1
4

9
4

4
9 0.77

3 3
4

15
4

4
15 %0.57

4 1
8

33
8

8
33 %0.83

5 5
8

45
8

8
45 %0.61

6 3
8

51
8

8
51 0.09

  

 The systematic list of coefficients on the right fulfills, for 

point-source causality,  the same role  as the coefficients of a Taylor 

series for Lagrangian causality.  

 METHOD III: Let ζ be some irrational number. 

Then the numbers 

kn = n! " [n! ]  will be uniformly dense in (0,1) . Let bn =
1
n!  , 

and look at the values of Λ(bn ) . Since 
!(bn) = "(nz) ="(n# $ [n# ])  , a large enough quantity of 

these will produce a close approximation to Π(ζ ) in (0.1). 

(i) Fourier Summability 
 If Π(x) is Fourier-summable, one may calculate Λ (x) from its 

behavior at the origin. The method employed closely resembles 

that of calculating the differential coefficients of a Taylor’s series. 
Let ω  = 2 π   , and assume that Π(t) may be represented  by a Fourier 

series of the  form :  

!(t ) =
a0
2 + {ak cos(kt) + bk sin(kt)

k=1

"
# }

 
Then the corresponding series for Λ  (x) is given by 

!(t) =
a0
2 + {ak cos(k / t) + bk sin(k / t)

k=1

"
# }

 



By constructing an algorithm for calculating these coefficients 

around the origin, we can plot the rest of the arc of Λ  (t) 

throughout all positive time.  Through Fourier analysis we know 

that for each k, 

ak =
1
! "(s)cos(ks)ds
0

2!
#  .  

Since Π(x) is periodic  this integral can also be written in the form: 

ak = lim
L!"

1
#L $(s)cos(ks)ds

2#L
4#L
%  

 By a change of variables, this becomes: 

ak = lim
L!"

2
L #(2$s)cos(2$ks)ds
L

2L
%  

Let z = 1/s  , ds = -(dz)/z2  . Since Λ(z) = Π(1/z) , one obtains: 

ak = lim
L!"

2
L

#(z 2$ )cos(2$k / z)dz

z21
2L

1
L%  

Letting ε  = 1/L  , 

Jk (! ) =
1

2
"(z 2# )cos(2#k / z)dz

z2
!
2

!

$

 

 Finally :  ak = lim
!"0

!
Jk (!)

 . The coefficients { ak } and {bk } 

may therefore be derived from any arbitrary neighborhood of an 

essential singularity in a manner thoroughly analogous to that 

used for the computation of Taylor or Fourier  coefficients.  
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