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1. Introduction
This  series of articles will look at  connections between the

general theory of algebraic structures, ( commonly referred to as Universal

Algebra  ) , and the modern viewpoint in the theories of Dynamical Systems ,

Chaos , Fractals and Rational Maps  .

This preliminary investigation  gives  evidence in support the

view that a  rich mathematics   - to which we give the name of Non-Linear

Algebra   - may be discovered in the interface of these two disciplines.

In the analysis of the dynamics of a function    y = ΦΦΦΦ ( x)  of a

single variable, one isolates a  sub-domain  ΛΛΛΛ    εεεε    R    - let's call these "interesting

points" - to be tested for a certain specific properties. The interesting points are:

(1) The fixed points  ΠΠΠΠ     = ( p1 , p2, p3   ,  ..... )   , with the

property  ΦΦΦΦ ( pj )  =  pj .  This set may include   ± ∞∞∞∞  .

(2) Pre-fixed or eventually fixed points  ΘΘΘΘ = { q αααα }   .   These

have the property that for each of them there exists a k such that

ΦΦΦΦ (k) ( qαααα    )  =  p i εεεε ΠΠΠΠ  . The set ΘΘΘΘ    is closed under iteration :  all

numbers that iterate to  elements of ΘΘΘΘ    are also in ΘΘΘΘ. For example,

if

 f (x)  = x2 + x - 1 , then  the fixed points are -1 , 1 . Since  f( 0

) = -1  , 0  is therefore a  pre-fixed point, as are the solutions of f(x)

= 0,  ββββ1 =  (-1 +  √√√√5)/2   ,  and ββββ2  =   (-1 -  √√√√5)/2  ; and the solutions
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of f(x) = ββββ1 , f(x) = ββββ2, and so on.  In general, the set of pre-fixed

points for a given fixed point will be infinite, particularly if one

admits the complex roots.

(3) The class of periodic points,

O = {n1 u1,n2 u2,n3 u3,....
nj uj ,....}

, where  nj equals the order of the periodicity of each point

in O .

(4) The pre-  , or eventually periodic points.

In addition to these there are:

(5) The chaotic points  ΧΧΧΧ ; those which, under iteration,

neither converge to or equal any fixed or periodic point. In this

paper, we will not be looking at this class.

 Having determined that a point t is interesting , one then wants to know

if it is attracting, repelling, neutral, the shape of its basin of attraction, the

closure of its class, etc . As a general rule one is not so much interested in the

behavior of a single function f , as one is in the properties of entire classes  F

of functions under the variation of one on more free parameters. The standard

model for  this procedure  the logistic equation :

ΦΦΦΦ ( x, λλλλ    )  =  λλλλ    x ( 1-x ) , in which x is the

variable,  λλλλ    the free parameter.

The point of departure for this article is the question: What are the

natural  generalizations of  these phenomena for   polynomials of two

variables? Take for example the function

F (x,y)  = z =  - y 2+ xy + 2y - x

The fixed points F ( s,s) = s , are  s1  = 1 , s2 = 2 . By substitution  F(1,2) = 1;

F(2,1) = 1; F(1,1) = 1 and F(2,2) = 2.

The values 1,2 therefore combine under F to give a closed binary

composition algebra  A  , with multiplication table :
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y / x 1 2

1 1 1

2 1 2
One  recognizes this as the table  in Boolean algebra for the conjunction

"Or" , where  "true" = 1, and "false” = 2.

Because the table is closed, every iteration g(x,y ) of the function F, such

as  g1 = F ( x, F(x,y)) , g2 = F (F(x,y), x),

g3 = F (F(x,y),  F(y,x))  , etc ., will give an output of either 1 or 2  for

inputs  1,  2 in the variables x and y . Hence, each of the possible iterates gk

generates  some binary composition algebra  A , not  necessarily conjunction,

whose elements are specified by the values 1 and 2.

This example can be  generalized to an entire class of surfaces

determined by polynomials in 2-variables, of the form:

z = P(x, y) = aij x
iy j

i, j=0,0
i+ j≤n

n,n
∑

On some of these, it which it may be possible to  find various sets of

values Zn
k = {zn1

,zn2
,zn3

,....znk
)

 Under the operation of the function z = P (x,y) , Zn forms a closed binary

composition algebra, that is to say, that if  zr and zs are in the set Zn , then the

value

zrs = P (zr , zs )  is also in the set Zn  .   A  = [Zn , P ]  is called  kth order

binary composition algebra  , (  there being no common  term for it, other than

"groupoid" which is not universally accepted ). Its presence on the 3-

dimensional surface created by  P is called a representation of degree n of an

kth order composition algebra. Much of the discussion in this paper will turn

around the relationship of order to degree.
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POSITION STATEMENT:  The natural generalization in two variables,

of the kth order periodic point for a function f of a single variable , is the kth

order binary composition algebra.

2. Binary Composition Algebras:
An  Overview

Let E = { e1 , e2 ,......en } designate a set of n indeterminate symbols. We

will say that E in combination with a binary relation , ° , is a binary

composition algebra, or simply composition algebra,  ( or even just an

“algebra” when there is no confusion  ) , if E is closed under  ° : given u , v εεεε E ,

then the composition of u and v , w=  f(u,v) =  u  °  v  is also in E . There is no

other condition. Binary Composition Algebras therefore include groups, semi-

groups, monoids, and so on.

As a matter of convenience, one can write either w = f (u,v) or w = u ° v,

or even w = uv when there is no confusion. However, since associativity isn’t

required one must be very careful in the placing of parentheses : (c (ab) )d is

very different from c ( (ab)d) , and certainly from (ca) ( bd).

Fundamental to the study of composition algebras are the multiplication

tables. They are  formed by three components:  two vectors and a matrix:

T :  

y
x z1 z2 z3 z4

z1 z11 z12 z13 z14

z2 z21 . . .

z3 z31 . . .

z4 z41 . . .

The horizontal border bH is the vector

(  z1 z2 z3 . . zm  )  containing some sub-set, or the

entirety, of the elements of the algebra E in some order . ( The z’s range over
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the elements of E ) It represents the y-coordinate in z= f(x,y) . We allow for

repeated elements.   The vertical border bV is the transpose vector:

bV =   

z1
z2

z3

.

.

zl

It contains some or all of the elements of E, with perhaps some

repetitions, and need not be in the same order as the horizontal. When the

horizontal and vertical  borders contain all and only the elements of E, only

once, and are in the same order, then we  call T a standard table , or, simply,

the table of E .

The body of a standard table, M , called  it’s  matrix  , is the collection

of double-indexed terms zij = zi  °  zj  , located in the row initiated by the term

zi in the vertical border and the column initiated by the term zj in the

horizontal border. can also be called the matrix of the algebra itself, as all

other matrices can be derived by permutations of rows and columns of  M  .

 Clearly it is possible for standard tables of two algebras to have the

same matrix, yet be quite different depending on the contents on their borders.

Consider these examples:
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U:

y
x a b

a a b

b a b

V:

y
x b a

b a b

a a b

The matrix for each of these tables is the same, but both horizontal and

vertical borders have been reversed. Notice that the first algebra has two fixed

points, whereas the second algebra has no fixed points:  they are not

isomorphic. One can also easily construct  two algebras with the same  vertical

and horizontal borders, with quite different  matrices, which are isomorphic.

Determining if two algebras are isomorphic is not always a simple matter. In a

paper written in 1987, I give an algorithm for determining, from a standard

table, if its’ algebra  is associative, that is, if it is a semi-group.

When bV and bH include all the elements of Z, then the structure

of its composition algebra is completely given by the corresponding table .

Symbolically, we can notate this as:  

  f :Z ⊗ Z → Z ≡ (Z,P, o) ≡ (bV ,bH , M)

One becomes interested of course in obvious combinatorial questions

like, the features common to  algebras whose tables have identical matrices , (

as in the above example) ; algorithms for identifying isomorphic algebras;  or

identifying semi-groups; the groups of symmetries over these tables,

(essentially Galois groups) , and so forth. A useful feature of the tabular

presentation is that it is a visual format that may  be physically composed with

itself to produce the tables of the successive iterates of the function which

governs  it.  This example  shows what I have in mind:
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f (x, y)→ f (x, f (x, y))

y / x z1 z2 z3

z1 z12 z12 z13

z2 z21 z22 z23

z z31 z32 z33

→
  

z1

z11 z12 z13

z11
1 z12

1 z13
1

+

z2

z21 z22 z23

z21
2 z22

2 z23
2 +

z3

z31 z32 z33

z31
3 z32

3 z33
3

↓
y

x z1 z2 z3

z1 z11
1 z12

1 z13
1

z2 z21
2 z22

2 z23
2

z3 z31
3 z32

3 z33
3

The 3 rows of the matrix of an algebra A = [Z , f(x,y)]  are

composed successively with the elements of the vertical border

to produce the matrix of [Z , f(x,f(x,y)) ]. The horizontal border is

then brought down from the original table to make the standard

table for the new algebra A’ = [ Z, f(x,f(x,y))] .

Iterating f in all possible ways one derives a set of related

functions, which generate other algebras and tables. If f is a arbitrary  function

in two variables x, y closed over a given finite range E,  then  the collection  of

all iterates of f is a second order clone, which we call  the iterate collection ,
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Ψ f . The elements of  Ψ f     are    f(x,x),  f(x,y),  f(y,y),  f(y,x) ,  f( x,f(x,x)),

f(y,f(x,x,)),  ............

We will also be interested in the collection of functions Ψ f
c

 , where c

is an indeterminate constant ( or collection of constants        c1, c2,...cn ), and the

iterate collection is enriched by the functions f(x,y) = c, f(c,x), f(x,c), f( c, f (x,y)),

f( x, f (c,y)) ,..... This may be called the iterate collection with constant c .

 The terms inside the brackets can be called monomial forms. The free

algebra of bivariate  forms  , M(x,y) , which is also a clone, is given by the

collection of strings: (x) , (y) , (xy) , (x(xx)), ((xx)x), ((xx)(xx)) , (y(xx)), (xx)y ,

((xy)(xy)), ((x(yx))y) .......    M is related to Ψ f   through the procedure of

adding a symbol  “f”  to the left of each left parenthesis, and by placing

commas between successive entries of the variables , and between juxtaposed

right and left parentheses  :

 )(    becomes   ),(  , etc.

Another useful construction is that of  the free algebra of monomial

forms  , Ξ  . This is constructed recursively by

(i)   ππππ0 = x ; ππππ1 = y

(ii)  . We extend the domain of the function f(x,y) which is over  E⊗ E
, to include E itself,  on which it is the identity:

f(ej ) = ej for all  ej  εεεε E

( ii) If   ππππαααα , ππππββββ  εεεε Ξ  , then   ππππγγγγ  = ( f( ππππαααα ) , f( ππππββββ )) εεεε  Ξ
In other words, each ππππ    is an ordered pairs of functions of  Ψ f    , and

each function in   Ψ f   may be interpreted as the application of  f, to some

argument    ππππ(x,y). Once again the description can be enriched by the addition

of one or more constants ci .

The construction of  Ξ   gives us no information on the manner in which

the monomial forms are counted . Although there is no unique method of

enumeration , there is only one way  which uses all of the natural numbers
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only once, and which gives ππππγγγγ  = ( f( ππππαααα ) , f( ππππββββ )) a higher index than either ππππαααα

or ππππββββ : the Cantor function on pairs of integers. It will be described in a

moment.

Suppose now that we are given some closed binary algebra A = ( Z, f ),

Z = ( z1 , ......zn ) , in which n is finite: consider the collection of iterates of f

over A  . Assuming a method for counting the monomial forms, we can identify

each function in  Ψ f  by its index: 

f j ≡ f (π j (x, y))  .

Each such function generates its own composition algebra over Z, closed

since f(x,y) is closed, with its own table, Tπ j
 . Since the cardinality of Z is n,

and since each of the n2 entries in T can be freely chosen, it follows that there a

total of   nn2

 tables that can be formed from Z. The number of distinct tables

generated by the iterates of f will be a sub-class of these, in general a much

smaller number. It follows that the number of distinct elements of  Ψ f      over

a given finite  composition algebra A , is finite. We will call this finite set of

algebras the algebraic class generated by A , or the elaboration of  Ψ f      over

A  , or simply, the class of A   .

If the functions and monomial forms have already been enumerated, this

construction sets up a natural congruence structure over the integers:  Writing

our algebra as A (n) , to indicate the order of A , we write

f j ≡ f k mod(A(n) ) , or just j ≡ k mod(A(n) ) to signify that these

two functions  give identical tables over Z . The integers j and k are

determined only by the method of enumeration , whereas the actual structure of

the congruence will depend on both the number n and the original function f .

It is required, of course, that f j and f k generate exactly the same table,

not merely isomorphic ones .

A Non-trivial Example
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We will say that an algebra A (n) is “right insensitive” ( or “left

insensitive” ), if for all u,v εεεε Z  f(u,v) = f(u,u) ,

( respectively,  = f(v,v) ) , that is to say, f is essentially a function of the

left ( right) variable alone  . Restricting our attention for the moment to second

order algebras only,  Z = Z2 = ( 0, 1 ), we adopt a certain enumeration scheme

for the elements of   Ξ  , and examine the simplest of the right insensitive

algebras of the second order , namely, the one  generated by the function

f(x,y) = x εεεε Z2 .

This function is represented  by the table 

y
x 0 1

0 0 0

1 1 1
What   the structure of the congruence generated, relative to the Cantor

enumeration,  over the integers? We will see that it is fairly complicated. The

following observation gives us some idea of what it looks like:

Let   ππππαααα   be some element in Π    other than  ππππ0     or  ππππ1 . It will then

be an ordered pair   πα = ( f (πα
λ ), f (πα

ρ ))

 and we can write :

fα ≡ f (πα ) = f ( f (πα
λ ), f (πα

ρ )) . If f is right insensitive, the

value  of  ππππααααρρρρ   will be irrelevant:  the table for ππππαααα   will be the same as that

for  ππππααααλλλλ  . Proceeding in this way,  always eliminating the right most

monomial form in the reduction  of ππππαααα , we see , finally , that the value of fαααα    

depends only on whether the left-most element of  ππππαααα  is x or y. Our

congruence will therefore be of the form

k ≡ 0 or k ≡ 1(mod f (x, y) = x, xεZ2 )
3. The Standard Enumeration  of the

Free Monomial Algebra Without Constants
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The method of enumeration which we will use is based on the

correspondence  between the spiral and the square that was devised  by Georg

Cantor in his proof that the ordinal of the set of   rational numbers is

countable.
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The diagram shows the positive , upper-right quadrant of the real

Cartesian plane. The  points  representing  the ordered pairs ( m,n) are marked.

The numbers  on the diagram enumerate the 0-dimensional complex formed by

this collection of  points by wrapping a spiral clockwise through them  . Note

that the enumeration begins with 2.  We will see why this is so in a moment.

Define : ππππ0  = x  , ππππ1 = y . The enumeration scheme substitutes back

and forth between (0,1) and (x,y). Starting from (0,0) as point 2 , count and label

all the points on the network up to the jth point on the spiral.  This number

corresponds to an ordered pair (l , r).  Since both l and r are clearly less than j,

we can locate the lth and the rth points on the spiral. These correspond to

ordered  pairs ( ll , lr ) and ( rl , rr ) . Identifying the jth point with the

monomial form  ππππj ,  write:

 

π j = ( f (π l ), f (π r ))

= ( f ( f (π ll
), f (π lr

)), f ( f (π rl
), f (π rr

)) =...

How the enumeration works in practice will become clear from the

calculation of the first 20 monomial forms. Setting up the  correspondences in

the form of a table , we have:
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(0) ↔ 0 ↔ x (1) ↔1↔ y (0,0

(0,1) ↔ 3↔ (x ⋅ y) (1,1) ↔ 4 ↔ (y ⋅ y) (1,0
(0,2) ↔ 6 ↔ (x ⋅(x ⋅ x)) (1,2) ↔ 7 ↔ (y ⋅(x ⋅ x)) (2,2) ↔
(2,1) ↔ 9 ↔ ((x ⋅ x) ⋅ y) (2,0) ↔10 ↔ ((x ⋅ x) ⋅ x) (0,3) ↔
(1,3) ↔12 ↔ (y ⋅(x ⋅ y)) (2,3) ↔13↔ ((x ⋅ x) ⋅(x ⋅ y)) (3,3) ↔1

(3,2) ↔15↔ ((x ⋅ y) ⋅(x ⋅ x)) (3,1) ↔16 ↔ ((x ⋅ y) ⋅ y) (3,0) ↔
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 Consider the spiral point #9. This corresponds to the ordered pair (2,1).

Point # 2 is at the origin and corresponds to (0,0). Since 0 corresponds to “x”

and 1 to “y”, it follows that the 9th monomial form, or ππππ9999        ====     (f (0,0), f(1)) = (

f(x,x), y) which is the same as  ((x.x).y) in composition notation. Then the 9th

function in the iterate collection is f (ππππ9999 ) = f(f(x,x),y). This description may

appear a bit repetitive, but it helps to see the enumeration scheme as being

applied to the monomial forms.The natural extensions to the iterate collection

and the bivariate algebra are self-evident.

Any ordered pair of integers can thus be corresponded to a  monomial

form. For example:

(9,7) -> ((2,1), (1,2)) -> (  (0,0), 1 ), (1,(0,0) )-> ( (x,x),y),(y,(x,x) )

-> f( f (f (x,x),y) ), f( y,f(x,x) ) ) .

By counting along the Cantor spiral we discover the the index of the

ordered pair (9,7) is 92  + 10 + 2 = 93. The above is therefore the form of f( ππππ99993333 )        ....

Describing the algorithm in general terms: The index N corresponds to

the N-1st point on the clockwise Cantor spiral. This is an ordered pair, (L,M). L

corresponds to point L-1 on the spiral, which is an ordered pair, (A,B) , M to

point M-1, which is an ordered pair (C,D). This process is continued until every

index has been expanded into a nested expression involving only 0’s and 1’s.

Replace 0 by x and 1 by y, placing the functional symbol f to the left of each

left parenthesis, replacing each dot by a comma gives us the Nth monomial in

Π .

Letting  ℑ  stand for index function, then

ℑ (a,b) = n , where p= (a,b) is an ordered pair in the plane and n

expresses the fact that p is the   n-1st  point along the spiral. The domain of ℑ
consists of

(i) the two integers 0 and 1, and
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(ii) the set of all integer pairs in the bordered upper right hand

quadrant of the real plane. Its range is of course, Z0
+

,  the natural numbers

with 0 .

Through an examination of  Figure 1 it is a simple matter to write down

the algebraic equation for ℑ : ℑ(a,b) = n =
a + b2 + 2;a ≤ b

(a +1)2 − b +1;a ≥ b









Since this function is 1-1, it has an inverse: Consider first the case n = a +

b2 + 2   a ≤≤≤≤ b . Then

b2  < n -2 < (b+1)2  . Therefore: 

b = [ n − 2],a = n − 2 − b2

= n − 2 − [ n − 2]2

Since we are assuming  a ≤≤≤≤ b , this works out to

n ≤ 2 + [ n − 2]+ [ n − 2]2 ≡ φ(n).

Otherwise we have:

n > φ(n),n = (a +1)2 − b +1,

a = [ n − 2],b = (a +1)2 − n +1

= [ n − 2]2 + 2[ n − 2]− n

Summarizing:

ℑ−1(n) =
(n − 2 − [ n − 2]2 ,[ n − 2]),n ≤ φ(n)

([ n − 2],([ n − 2]2 + 2[ n − 2]− n),n ≥ φ(n)









By way of illustration  we elucidate the congruence relations within the

free bivariate algebra,   A(  mod f(x,y) = x ) over the domain Z2 = (0,1) . In

general

 fk = f( ππππk (x,y))  = x
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if the left-most variable in  ππππk  is x ,or y if it is y. Inspecting the first few

numbers in Figure I one has:
0 ≡ 0,2,3,6,8,9,10,11,12,13,14,15,16,17,,,

1≡ 1,4,5,7,22,23,24,25,26,........
In general f( ππππk ) = (f(  ππππl ), f( ππππr ) ) = f(  ππππl ) .

 From the formulae for the Cantor indexing function, it follows  that :

l =
(k − 2 − [ k − 2]2 ),k ≤ φ(k)

([ k − 2]),k ≥ φ(k)









Successive iterations of  l  via these formulae produces a  sequence l(k) ,

l(l(k)), l(l(l(k)) ,  a composition exponent is reached for which l(q)(k)   = either 0

or 1. One can show that q is  the smallest integer for which

1 < (k − 2)1/(2q ) < 2  . Solving for q we obtain q = ln2(ln2(k)). We

can therefore represent the congruence in the form:

k ≡ [l(1+ln ln2 k)(k)](mod f (x, y) = x, xεZ2 )

Although this formula is very cumbersome, there are simpler relations

which show us what is actually going on:  By the nature of the left identity

function f,  k ≡ ℑ(k,h) for all  h.

Let k ≤≤≤≤ h ; then 

k ≡ k + h2 + 2(mod f ).Writing

h = k + m,gives

k ≡ k + (k + m)2 + 2 = k2 + k(2m +1) + m2 + 2,∀m ≥ 0

Similarly for k>h ,we have 

k ≡ (k +1)2 − h +1 = k2 + 2k + 2 − h(mod f ) .

These formulae quickly generate the residue  classes C(0) and C(1)  by

plugging in various values for k, h and m. Thus, starting with m=0 k= 0 we

have 

0 ≡ 2 ≡ 8 ≡ 74 ≡...

m = 1,k = 0 → 0 ≡ 3 ≡ 21≡...

m = 0,k = 1→1≡ 4 ≡ 22 ≡...etc.
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4. Binary Composition Algebras of Order 2
For fixed standard borders, the table of a composition algebra of order 2

has four entries. Therefore the number of distinct tables is 24 = 16.  After

quotienting by  isomorphism  one is left with only 7 distinct  composition

algebras of order 2. They are listed here, grouped by  isomorphic forms.

We let x and y stand for variables , z1 and z2 for indeterminates, or

unspecified real or complex numbers :

1. The constant algebras:

  

Oz1
:f(x,y) = z1

y
x z1 z2

z1 z1 z1
z2 z1 z1

Oz2
:f(x,y) = z2

y
x z1 z2

z1 z2 z2
z2 z2 z2

These algebras are obviously isomorphic.

2. The right ( left) insensitive algebras with two fixed points:
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Lx:f(x,y) = x

y
x z1 z2

z1 z1 z1
z2 z2 z2

Ly:f(x,y) = y

y
x z1 z2

z1 z1 z2
z2 z1 z2

3.  The right ( left) insensitive algebras without fixed points:

  

k = z1 + z2 ;

Bx:f(x,y) = k − x

y
x z1 z2

z1 z2 z2
z2 z1 z1

By:f(x,y) = k − y

y
x z1 z2

z1 z2 z1
z2 z2 z1

4. The group, G :
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Gz1
:

y
x z1 z2

z1 z1 z2
z2 z2 z1

Gz2
:

y
x z1 z2

z1 z2 z1
z2 z1 z2

This is the only second-order group.

5. The Boolean Algebras:

  

∧("and"):

y
x z1 z2

z1 z1 z1
z2 z1 z2

∨("or"):

y
x z1 z2

z1 z1 z2
z2 z2 z2

6. The ‘Anti-Boolean Algebras’:
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Xz1 :

y
x z1 z2

z1 z2 z1
z2 z1 z1

("¬(p∧ q)")

Xz2
:

y
x z1 z2

z1 z2 z2
z2 z2 z1

("¬(p∨ q)")

7. The 4 Implication Algebras.

R1:

y
x z1 z2

z1 z2 z1
z2 z2 z2

R2:

y
x z1 z2

z1 z2 z2

z2 z1 z2

R3:

y
x z1 z2

z1 z1 z2

z2 z1 z1

R4:

y
x z1 z2

z1 z1 z1
z2 z2 z1

All of algebras are isomorphic, and represent, respectivally, the truth

tables for p->q, q->p, ¬( p-> q ), and  ¬( q-> p ).

5. Representations of  Second Order Algebras
by  Linear Forms

All of the insensitive algebras can be represented by functions of a

single variable:
Oz1 : f (x, y) = z1
Oz2

: f (x, y) = z2
Lx : f (x, y) = x
Ly: f (x, y) = y
Bx : f (x, y) = k − x;(k = z1 + z2 )
By: f (x, y) = k − x

Linear representations are not possible for the other algebras:
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THEOREM I: No linear form l(x,y) = Ax + By + C , with both A

and B ≠≠≠≠ 0 , can represent any composition algebra of order   ≥≥≥≥  2.

The theorem only needs to be proven for second order algebras, the

proof being similar for higher orders. Let K be any one of the six 2nd order

algebras, and write its table in the form:

  

g(z1,z1) = z11
g(z1,z2) = z12
g(z2 ,z1) = z21
g(z2 ,z2) = z22

At least two of these expressions must be equal to each other. By the

inherent symmetries we need only consider two  cases:

(i)  z11 = z12

(ii) z11 = z22  and z12 = z21

In the first case we see that

g(  z1 ,  z1 )- g(  z1 ,  z2 )  =  A ( z1 -  z1  ) +  B (  z1 - z2  )  = 0 ,

or  B = 0 , contrary to hypothesis.

In the second case we have, g(  z1 ,  z1)- g(  z2 ,  z2 )  =

A ( z1 -  z2  ) +  B ( z1 - z2 )  = ( A+B) (  z1 - z2  ) = 0

g(  z1 ,  z2 )- g(  z2 ,  z1 )  = A ( z1 -  z2  ) -  B (  z1 - z2  )  =

( A-B) (  z1 - z2  ) = 0.

Therefore, since  z1  and  z2 are distinct  A+B = A-B = 0 and

A = O, B = 0 . Q.E.D.

6. Representations of the 7 Second Order
Algebras by Inhomogeneous Quadratic Forms

  All of the second order composition algebras can be represented

by families of inhomogeneous quadratic forms. In addition, there are specific

surfaces which can hold two distinct second order algebras. These objects

generalize, as was stated at the beginning , like the fixed and periodic points of
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functions of a single variable. We will show why the collection of second

order algebras on a particular surface must be either all sensitive or all ( left

or right) insensitive. There exist surfaces on which all the insensitive algebras

are found trivially.  Simple combinatorial arguments will show why no second

degree, or quadric, surface can hold 3 sensitive algebras.

Write the general equation of a quadratic function of two variables as

f (x, y) = ax2 + by2 + cxy + dx + ey + q .

We suppose that f represents a certain algebra K on at least two values

z1 and z2 , and that its table is given by f( zi , zj ) = zij εεεε Z2 . This statement is

equivalent to this set of four equations:

(α ):(a + b + c)z1
2 + (d + e)z1 + q = z11

(β ):az1
2 + bz2

2 + cz1z2 + dz1 + ez2 + q = z12

(γ ):az2
2 + bz1

2 + cz1z2 + dz2 + ez1 + q = z21

(δ ):(a + b + c)z2
2 + (d + e)z2 + q = z22

Define the constants:

k = z1 + z2,   

h = a+b+c ,

l = e+d.

The case h = 0 will be called degenerate for reasons that will be evident

later. We will need 3 structure constants, given by :
ε1 = (z11 − z12 / (z1 − z2 )

ε2 = (z11 − z21) / (z1 − z2 )

ε3 = (z11 − z22 ) / (z1 − z2 )

We adopt the following convention: If an algebra K has only a single

fixed point, that point is z1. In combination with this convention, the structure

constants completely determine the algebra.

The number of fixed points is given by εεεε3 :
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(a)  εεεε3 = 1, both points are fixed. Then εεεε1 ,  εεεε2 can only assume

values 0 or 1. If

(b) εεεε3 =0, there is only one fixed point, which by  our convention

is  z1  . Once again εεεε1 ,  εεεε2 can only assume values  0 or 1. If

(c) εεεε3 = -1, then neither point is fixed:  εεεε1 ,  εεεε2 can only assume

values 0 or -1.

The equations (    αααα) and ( ββββ    ) will be called the outer set of equations. (  γγγγ )

and (δδδδ) are the inner set.

THEOREM II: If z= f(x,y) is an inhomogeneous quadratic form

in two variables , then there exist at most 6 values the variables (x,y,z), , either

real or complex, which can be combined in pairs to produce a second order

composition algebra on its surface. These, furthermore, can be combined in

only four ways These values are:

s1 = (1− l + (1− l)2 − 4qh) / 2h

s2 = (1− l − (1− l)2 − 4qh) / 2h

s3 = (−1− l + (1− l)2 − 4qh) / 2h

s4 = (−1− l − (1− l)2 − 4qh) / 2h

s5 = (−1− l + (1− l)2 − 4qh − 4) / 2h

s6 = (−1− l + (1− l)2 − 4qh − 4) / 2h

These expressions come from the outer set of equations. The four

possible combinations for composition algebras are:

K1 = ( s1 , s2 )

K2  = (s1, s4)

K3 = ( s2 , s3 )

K4 = ( s5 , s6 )

PROOF: Subtracting  (δδδδ )   from   (αααα ) gives :
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h(z1
2 − z2

2 ) + l(z1 − z2 ) = z11 − z22

= ε3(z1 − z2 ) ≠ 0
Factoring out z1 − z2  :

h(z1 + z2 ) + l = hk + l = ε3

k = (ε3 − l) / h

Case I: ε3 = 1  . This is the condition for a second -order algebra of

two fixed points. They will therefore be the two roots of the equation:

hs2 + ls + q = s

s1,s2 = (1− l ± (1− l)2 − 4 fh) / 2h
Case II: ε3 = 0 . By the convention adopted, this signifies an algebra

in which z1 is fixed and z2 is not. Thus. z1 can be any one of the two values s1

or s2  , while z2 can be s3 or s4 , which are solutions of:

hs2 + ls + q = k − s = ((ε3 − l) / h)− s

= −l / h

s3,s4 = (−1− l ± (1− l)2 − 4 fh) / 2h

Since z1 + z2 = k = -(l /h)  , these must combine in the pairs (s1 ,s4  ) , or  (s2

, s3 )  in any algebra of this type.

Case III :  ε3 = −1. There are no fixed points. Both z1 and z2 are the

twin solutions of the same equation,  which is:  

hs2 + ls + q = k − s = (ε3 − l) / h − s

= −(1+ l) / h − s

s5,s6 = (−1− l ± (1+ l)2 − 4h(q + (1+ l) / h) / 2h

= (−(1+ l) ± (1− l)2 − 4qh − 4) / 2h
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The 4 possible algebras on the surface determined by f(x,y) are therefore

( s1 ,  s2 ) , (s1 , s4 ) , ( s2 , s3 ) , and ( s5 , s6 ) .  Q.E.D.

We will describe the conditions on the 6 coefficients of f that determine

the presence  of one or more of the seven basic second order algebras. By

subtracting (αααα) , (ββββ) , (γγγγ)  ,(δδδδ) from each other and dividing through by z1 - z2 ,

one obtains this set of 6 equations:
(i)bk + cz1 + e = ε1
(ii)bk + cz2 + e = ε3 − ε2
(iii)ak + cz1 + d = ε2
(iv)ak + cz2 + d = ε3 − ε1
(v)hk + l = ε3
(vi)(a − b)k + d − e = ε2 − ε1

Subtracting (ii) from (i) gives  the important relationship:

c(z1 − z2 ) = ε1 + ε2 − ε3 Let

δ = ε1 + ε2 − ε3. Then

 c = δ / (z1 − z2 )

c  is uniquely determined by the values of the z’s and the structure

constants of the algebra. This is not true of any of the other coefficients.

However, since the above set of 6 relationships is not independent, we can let

two of the coefficients be arbitrary, expressing  the rest in terms of them, the

specific values of the z’s, and the structure constants.

These coefficients  can  be derived  from  the outer set of tabular

equations (αααα) and (δδδδ):

hz1
2 + lz1 + q = z11

hz2
2 + lz2 + q = z22

Transfer q to the right side and treat these as simultaneous equations in the
unknowns h and l. Solving for h :
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h =
z11 − q z1
z22 − q z2

/
z1
2 z1

z2
2 z2

= ((z11z2 − z22z1) + q(z1 − z2 )) / (z1
2z2 − z2

2z1)
= ((z11z2 − z22z1) / z1z2(z1 − z2 )) + q / z1z2
Let
D = ((z11z2 − z22z1) / z1z2(z1 − z2 ))
Then,
a + b + c = D + q / z1z2
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This is the fundamental equation linking the coefficients of the

quadratic form f to the algebra K. “c “and “D” can be computed directly from

the structure constants of the algebra and the specifications z1 and z2 . Selecting

“a “and “q” as free parameters, “b” can then be derived from the above

equation. Given these quantities, we can now solve for “d” and “e” from

equations (i) and (iii) :
e = ε1 − cz1 − bk

d = ε2 − cz1 − ak

THEOREM III: Given the second order algebra K, the

specifications z1 and z2 , and letting a and q function as free parameters, one

can derive all of the coefficients of the quadratic forms  f (x,y) representing K ,

from the equations:

 

E1: a + b + c = D + q / z1z2
E2: c = δ / (z1 − z2 );δ = ε1 + ε2 − ε3
E3: D = (z11z2 − z22z1) / (z1z2(z1 − z2 ))
E4: e = ε1 − cz1 − bk
E5: d = ε2 − cz1 − ak
E6: k = z1 + z2

Before  listing the 7 algebras with  their polynomial representations,

observe that it is possible to rewrite the polynomial expression for f as a sum

of three quadratics, two of which are the same in all representations and vanish

identically on z1 and z2 . Substituting for b, c, etc., one has:

f (x, y) = ax2 + by2 + cxy + dx + ey + q
= ax2 + (D + q / z1z2 − c − a)y2 + cxy + (ε2 − cz1 − ak)x
+(ak − kq / z1z2 + ε1 + c(k − z1)− kD)y + q
= aP(x, y) + qQ(x, y) + R(x, y) ,where
P = a(x2 − y2 − k(x − y))
Q = q(y2 / z1z2 − ky / z1z2 +1)
R = y2(D− c) + cxy + (ε2 − cz1)x + (ε1 + cz2 − kD)y
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P(x,y) and Q(x,y) are the same for all algebras, and for most purposes

superfluous. The catalog presented below gives K, its  structure constants, D ,

and R(x,y):

CATALOG A
Algebra I:

∧(Boolean"and")

K =

y
z z1 z2

z1 z1 z1
z2 z1 z2

ε1 = 0,ε2 = 0,ε3 = 1,δ = −1, D = 0
R = (y2 − xy + z1x − z2y) / (z1 − z2 )

Algebra II:

Lx

K =

y
z z1 z2

z1 z1 z1
z2 z2 z2

ε1 = 0,ε2 = 1,ε3 = 1,δ = 0, D = 0
R = x

Algebra III:



#30...
Oz1

K =

y
z z1 z2

z1 z1 z1
z2 z1 z1

ε1 = 0,ε2 = 0,ε3 = 0,δ = 0, D = −1 / z2
R = (ky − y2 ) / z2

Algebra IV:
Gz1

K =

y
z z1 z2

z1 z1 z2
z2 z2 z1

ε1 = 1,ε2 = 1,ε3 = 0,δ = 2, D = −1 / z2

R =
−ky2 + 2z2x(y − k) + kz1y

z2(z1 − z2 )
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Algebra V:

R4

K =

y
z z1 z2

z1 z1 z1
z2 z2 z1

ε1 = 0,ε2 = 1,ε3 = 0,δ = 1, D = −1 / z2

R =
−z1y2 + z2xy − z2

2x + z1
2y

z2(z1 − z2 )

Algebra VI:

Xz2

K =

y
z z1 z2

z1 z2 z2
z2 z2 z1

ε1 = 0,ε2 = 0,ε3 = −1,δ = 1

D =
−(z1 + z2 )

z1z2

R =
((z2

2 − z1z2 − z1
2 )y2 + z1z2x((z1 − z2 )y − z1)
z1z2(z1 − z2 )

+
k2y
z1z2

Algebra VII:

Bx
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K =

y
z z1 z2

z1 z2 z2
z2 z1 z1

ε1 = 0,ε2 = −1,ε3 = −1,δ = 0,
D = −(z1 + z2 ) / (z2z1)

R =
−ky2 − z1z2x + k2y

z1z2

7. Surfaces With Two Distinct 2nd Order
Algebras

Having characterized all the quadric surfaces holding second order

composition algebras, we now investigate the conditions under which such

surfaces may support two different algebras.  It was shown that  at most four

algebras are possible :

K1 = ( s1 , s2)

K2  = (s1, s4)

K3 = ( s2, s3)

K4 = ( s5, s6 )

Symmetry arguments show  that we need only examine four possibilities.

S holds either

I:  K1 ,  K2

II: K2 ,  K3

III: K2 , K4, or

IV:  K1 , K4

CASE I: K1 = ( s1 , s2  ) ;  K2  = (s1, s4)

We distinguish between the structure constants of  K1 and  K2, and write:
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K1:    ε1
1

,   ε2
1

,   ε3
1

(=1) ;

   δ1 =   ε1
1

+  ε2
1

-   ε3
1

  k1 = s1 + s2 = (1− l) / h

K2:     ε1
2

,   ε2
2

,   ε3
2

(=0);

  δ2   =  ε1
2

+   ε2
2

  - ε3
2

k2 = s1 + s4 = −l / h

Let g=   (1− l)2 − 4qh

From the equations derived in the previous section one has :

c= 
δ1

(s1 − s2 ) = δ2
(s1 − s4 )

s1 -s2 = g /h

s1 -s4 = (1+g)/h .

Therefore  (1+ g)δ1     = gδ2
If any one  of the three values c ,    δ1   ,    δ2      are equal to 0, then, (as

the sj are  assumed to be distinct),  they all  equal 0. Leaving this aside for the

moment, we assume c ≠≠≠≠ 0. Solving for g gives 

  g = δ1 /(δ2 − δ1)
Since g always exists and   δ1 ≠ 0 , it follows that   δ1   ≠≠≠≠   δ2  .

The possibilities are therefore:

  δ1 =   ε1
1

+  ε2
1

- 1                           δ2   =  ε1
2

+   ε2
2

-0
________                     __________________

-1 1,2

        +1 2

This translates into 3 options:

(i)  g = -1/(1-(-1))    = -1/2  (    δ1  =-1 ,    δ2  = +1)

(ii) g = -1/(2-(-1))    = -1/3  (    δ1  =-1    δ2   = +2 )

(iii) g = 1/(2-1)        = +1    (    δ1 =+1    δ2  = +2  )

Option  (i)  :  Substitute -1/2 for g in the expression for c to derive
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c = 2h.  Since h = a+b+c ,  a+b = -h

  

s1 = (1− l + g)/2h...= (1− 2l)/ 4h
s2 = (1− l − g)/2h...= (3 − 2l)/ 4h
s4 = (−1− l − g)/2h...= −(3 + 2l)/ 4h

Under the assumption     δ1  =-1 ,    δ2  = +1 one has   ε1
1

=0 ,  ε2
1

=0, and

either   ε1
2

=1,   ε2
2

=0 , or   ε1
2

=0,   ε2
2

=1.

These restrictions produce isomorphic algebras, so assume the former,

namely   ε1
2

=1,   ε2
2

=0 .

Going back to the fundamental set of relations (i)...(vi)  (page 31) and

writing z1 = s1 , z2= s2   for the first case, and z1=s1 , z2 = s4 for the second case,

we have:

ak1 +cs1  + d =   ε2
1

=0,

ak2 +cs1  + d =   ε2
2

=0.  This implies a=0

bk1 +cs1  + e =   ε1
1

=0 ,

bk2 +cs1  + e =    ε1
2

=1 . Therefore  b( k2 -k1 )  = 1,

which works out to

a=0 , b = -h,  c=2h

From these same equations:

  

d = −cs1 = −2h((1− 2l)/ 4h)
= (2l −1)/2 = l −1/2 = d + e −1/2
∴e = 1/2

Lastly we can get q from

  

g = −1/2;(1− l)2 − 4qh = 1/ 4

= (1/2 −d)2 − 4qh = 1/ 4 −d + d2 − 4qh

∴q = (d2 −d)/ 4h
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THEOREM IV : The quadric surfaces holding these two

algebras:

K1(∧):

y
x z1 z2

z1 z1 z1
z2 z1 z2

,

and

K2(R3):

y
x z1 z2

z1 z1 z2
z2 z1 z1

are given by the family of equations:

  z = f(x,y) = −hy2 + 2hxy + dx + (1/2)y + (d2 −d)/ 4h

Option (ii) :  g = -1/(2-(-1))    = -1/3      δ1  =-1 ,       δ2    = +2

             ε1
1

=  ε2
1

=0,     ε1
2

=   ε2
2

=1,

ak1 +c s1  + d =   ε2
1

=0,

ak2 +c s1  + d =   ε2
2

=1.

bk1 +cs1  + e =   ε1
1

=0 ,

bk2 +cs1  + e =    ε1
2

=1 .

a( k1 -k2 ) = -1 =  b(k1 - k2 ), so that a = b ( unless h = 0,

which is treated separately) . Since k1 -k2  =1/ h , a = - h. Therefore

a = - h , b = - h , c = 3h .

Then since
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s1 = (1− l + g)/2h...= (2 − l)/2h
, we

see that

  

0 = ak1 + cs1 + d = −h(1− l)/h + 3h(2 − l)/2h + d
= l −1+ 3/2(2 − l) + d = l −1+ 3 − 3/2l + d
= 2 + d − l/2
∴d = l/2 − 2

But one also has that

  

(a − b)k1 + (d − e) = 0 = d − e;
d = e,d + e = l,d = (d + e)/2 − 2 =

2d/2 − 2 = d − 2
∴2 = 0!
THEOREM V : The following combination of algebras will

not be found on any quadric surface in 3-space:

K1(∧):

y
x z1 z2

z1 z1 z1
z2 z1 z2

,

and

K2(Gz1 ):

y
x z1 z2

z1 z1 z2
z2 z2 z1

Option (iii) :  g = 1/(2-1)          = +1      δ1 =+1         δ2  = +2

     ε1
1

=  ε2
1

=1 ,     ε1
2

=   ε2
2

=1
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s1 = (1− l + g)/2h...= (2 − l)/2h
s2 = (1− l − g)/2h...= −l/2h
s4 = (−1− l − g)/2h...= −(2 + l)/2h

s1 − s2 = 1/h,c = (δ1h /g) = h = a + b + c
∴a + b = 0

But we can easily show that a=b, since

ak1 +cs1  + d =   ε2
1

=1,

ak2 +cs1  + d =   ε2
2

=1.

bk1 +cs1  + e =   ε1
1

=1

bk2 +cs1  + e =   ε1
2

=1 .

Since k1 ≠≠≠≠ k2 , both a=b=0 and d=e. From g = 1 we obtain

  (1− l)2 − 4qh = 1; l = 2d;q = 3/ 4h
THEOREM VI : The pair of algebras:

  

K1(∨):

y
x z1 z2

z1 z1 z2
z2 z2 z2

K2(Gz1
):

y
x z1 z2

z1 z1 z2
z2 z2 z1

exist together on the family of surfaces in 3-space given by:

  z = f(x,y) = hxy + d(x + y) + (d2 −d)/ 4h

Finally we look the situation:  c=0. This is trivially satisfied by all

surfaces with no x variable  : z=hy2+ly+q .

Case II :  K1 = ( s1, s2 )   K2 = ( s5, s6 ) . Once again we first assume that

c ≠≠≠≠0.

Then  c=   δ1/(s1 -s2)    =  δ2 /(s5 -s6) . Write,
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g = (1− l)2 − 4qh

g2 − 4 = (1− l)2 − 4qh − 4

For a pair of algebras with these traces one  has:

  

ε3
1 = 1,ε3

2 = −1

δ1,δ2ε{−1,0,1}
As the case c=0 is excluded for the moment, this means that

  

δ1 = ±δ2 = ±1

1/g = ±1/ g2 − 4

g2 = g2 − 4
4 = 0!

Therefore one  cannot have two algebras of this kind on a surface unless

c=0.   It turns out that in this instance, the solution for c=0 is non-trivial.

Observe in passing that if c=0 , all of the algebras on the surface must be either

right or left insensitive. The simplest way to show this is to try all

combinations of    εεεε’s for δδδδ=0 and note that they all produce insensitive algebras.

However, we will now  exhibit a family of surfaces which contains both  a

right and  a left insensitive algebra.

Let 

ε1
1 = 1,ε2

1 = 0,ε3
1 = 1

ε1
2 = 0,ε2

2 = −1,ε3
2 = −1

δ1 = δ2 = 0

Using  familiar procedures one has :
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e = 0 − bk1 = −1− bk2

d = 0 − ak1 = −1− ak2,or:

b(k1 − k2 ) = +1 = a(k1 − k2 ).

∴a = b;c = 0 → a = b = h / 2

d = −ak1 = −h / 2((1− l) / h) = (l −1) / 2

= (d + e −1) / 2

∴e = d +1

THEOREM VII : The family of surfaces defined by the

equations:

z = f (x, y) = a(x2 + y2 ) + d(x + y) + y + q

hold the two algebras:

 

Lx =

y
x z1 z2

z1 z1 z1
z2 z2 z2

Ly =

y
x z1 z2

z1 z1 z2

z2 z1 z2

Case III:  K1 = ( s1, s4 )   K2 = ( s2 , s3 ) ; ε3
1 = 0   ε3

2 = 0
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s1 − s4 = (1+ g) / h

s2 − s3 = (1− g) / h

g = (1− l)2 − 4qh

 Therefore    c = δ1 / (1+ g) = δ2 / (1− g)

The situation g= 0 is excluded as it implies  a double point. Therefore:

δδδδ1111    ≠≠≠≠    δδδδ2222    . We also cannot have g ±1,  since this  also implies double points.

Solving the above equation gives:
δ1 − δ2g = δ1 + δ2g,or

g(δ1 + δ2 ) = δ1 − δ2

Assuming always  that c ≠≠≠≠ 0   the possible values for the deltas are:

δ1 = ε1
1 + ε2

1;δ2 = ε1
2 + ε2

2;

∴δ1 = 2,δ2 = 1;

or,δ1 = 1,δ2 = 2,Therefore

g = ±1 / 3

Therefore assume that, (the other case being isomorphic):

 

ε1
1 = 1,ε2

1 = 1,ε3
1 = 0

ε1
2 = 0,ε2

2 = 1,ε3
2 = 0

δ1 = 2,δ2 = 1

 Referring to the basic set of relations one has:
k1 = k2 = −l / h

d = ε2
1 − cs1 − ak1 = 1− cs1 − ak1

d = ε2
2 − cs3 − ak2 = 1− cs3 − ak1

∴s1 = s3
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This is ruled out because s1 is a fixed point and s3 is not.  It follows that

the simultaneous existence of two algebras of this type on a surface is

incompatible with the condition c≠≠≠≠0.   If we let c = 0  , it will follow that all

the epsilons and deltas will be zero!Then

d=-ak1 = (al)/h

e=(bl)/h

h=a+b

l=d+e. Since k1=k2= k = -(l/h) , the desired

family of equations must be of the form:

  

z = f(x,y) = ax2 + by2 − akx − bky + q
= ax(x − k) + by(y − k) + q
f(s1,s4 ) = as1(s1 − k) + bs4(s4 − k) + q
= −as1s2 − bs4s3 + q
= as2s1 − bs3s4q = f(s2 ,s3)(!!)But

f(s1,s4 )ε s1,s4{ }, f(s2 ,s3)ε s2 ,s3{ }
In other words, the tables of the two algebras cannot contain common

elements. Combining this with the previous result for c≠≠≠≠0, gives

THEOREM VIII : This pair of algebras is incompatible

with any surface!

IV: K1 = ( s1, s4 )   K2 = ( s5, s6) ; ε3
1 = 0  ε3

2 = −1. As usual we

assume that
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c≠≠≠≠0, δδδδ1 ≠≠≠≠0 ,  δδδδ2≠≠≠≠ 0 .

Then

s1 − s4 = (1+ g) / h

s5 − s6 = g2 − 4 / h

g = (1− l)2 − 4qh
c = δ1 / (s1 − s4 ) = δ2 / (s5 − s6)

= (ε1
1 + ε2

1 ) / (1+ g) = (ε1
2 + ε2

2 +1) / g2 − 4
∴δ1

2(g2 − 4) = δ2
2(1+ g)2,and

g2(δ1
2 − δ2

2 )− 2δ2
2g − (4δ1

2 + δ2
2 ) = 0

The only possibilities for the deltas are δδδδ1 =1,2 ,  δδδδ2=-1,1.  Therefore

δ1
2 = 1,4;δ2

2 = 1

Combining these conditions gives rise to two equations for g, with three

distinct roots:
(1.)− (2g + 5) = 0

(2.)3g2 − 2g −17 = 0

g1 = −5 / 2;

g2 = (1+ 2 13) / 2;g3 = (1− 2 13) / 2
The two roots g2 ,   g3  correspond to isomorphic algebras. We need

therefore only consider  g1 and g2 .

Option (i) : g= -5/2. Then

ε1
2 = ε2

2 = ε3
2 = −1

(a)ε1
1 = 0,ε2

1 = 1,or

(b)ε1
1 = 1,ε2

1 = 0

δ1 = 0,δ2 = −1

(a) and (b) are equivalent so we choose (a) . Finally we can write down

these basic relations:
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d = 1− cs1 − ak1 = 1− cs5 − ak2

e = 0 − cs1 − bk1 = −1− cs5 − bk2

k1 = −l / h;k2 = −(1+ l) / h

c(s1 − s5) + a(k1 − k2 ) = 2

c(s1 − s5) + b(k1 − k2 ) = 1

(a − b)(k1 − k2 ) = 1

= (a − b)(−l / h + (1+ l) / h) = (a − b)h

∴a − b = h = a + b + c,or

2b + c = 0;

c = δ1h / (s1 − s4 ) = −2 / 3h,and

therefore:

a = 4b;c = −2b;h = 3b

We use the top equations to compute the values of c and d:
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d − e = (b − a)k2 = (b − 4b)(−1− l) / 3b

= 1+ l = d + e +1,or

2e +1 = 0;∴e = −1 / 2

d = 1− cs1 − ak1 = 1+ 2b(3 + 2l) / 12b + 4bl / 3b

= 1+ (2l + 3) / 6 + 4l / 3 = 3 / 2 + 5(d + e) / 3

= 3 / 2 + 5 / 3(d −1 / 2) = 3 / 2 − 5 / 6 + 5 / 3d

∴d = −1(!)

 A final surprise awaits us. Lets us find the value of q from

the expression for g:

g = (1− l)2 − 4qh = −5 / 2

l = d + e = −1 / 2 −1 = −3 / 2

(1+ 3 / 2)2 − 4qh = (5 / 2)2 − 4qh = (5 / 2)2

∴4qh = 0 ⇒ q = 0(!)

,assuming as always that, for the moment h≠≠≠≠0.

THEOREM IX : These two algebras:
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Xz1
=

y
x z1 z2

z1 z2 z1
z2 z1 z1

R2 =

y
x z1 z2

z1 z1 z1
z2 z2 z1

can be found together on the family of surfaces given by

z = 4bx2 + by2 − 2bxy − x −1 / 2y

s1 = 0,s4 = (1 / 2)b,s5 = (−1 / 6)b,s6 = (1 / 3)b

Option (ii) :  g = (1+ 2 13) / 2

This option  is by far the most exotic . We have

δ1 = ε1
1 + ε2

1 = 2;δ2 = ε1
2 + ε2

2 +1 = ±1
ε1

1 = ε2
1 = 1,and

(a)ε1
2 = ε2

2 = −1;or
(b)ε1

2 = ε2
2 = 0

It turns out that cases (a) and (b) are equivalent, so we use case (a). Then:

c = δ1h / (1+ g) = 2h / (1+ (1+ 2 13)) / 3)

= 6h / (4 + 2 13) = 3h / (2 + 13)

= h( 13 − 2) / 3;

d = 1− cs1 − ak1 = −cs5 − ak2

e = 1− cs1 − bk1 = −cs5 − bk2;

(d − e) = (b − a)k1 = (b − a)k2

Since,k1 = −l / h ≠ k2 = (−1− l) / h

∴a = b,d = e(!)
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With the above set of equations we can now calculate

 a ( =b) in terms of either h or c:

h = 3c / ( 13 − 2) = c(2 + 13) / 3

= a + b + c = 2a + c

∴a = c( 13 −1) / 6 = b
THEOREM X : The two algebras:

Gz1
=

y
x z1 z2

z1 z1 z2

z2 z2 z1

Xz2 =

y
x z1 z2

z1 z2 z1
z2 z1 z1

can be found together on the family of

surfaces given by

z =
(c(x2 + y2 )( 13 −1))

6
+ cxy + d(x + y) + q

where the value of q may be obtained from the solution to the equation:

(1− 2d)2 − 4qc(2 + 13) / 3

= (1+ 2 13) / 3

We wrap up this  analysis of the situation by considering  the

exceptional cases, c=0 ,  and h=0. For every situation in which c = 0 ( except the

one described in Case II ) , either the x or the y variable drops out and we are

dealing with single variable dynamics on insensitive algebras. In the

degenerate situation,   h = 0, the outer equations collapse; there can be at most

one fixed point given by p  = q/(1-l )  = s1 . There can’t be any other composition

algebra point since if there was such a point p*, it would have to satisfy

f(p*,p*)= p ; but only p  satisfies this.
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However, if h = 0 and l=1, then every value x is a fixed point, as in the

equation f(x,y) = x2 - y2 + x. For this equation, any pair of values (v,-v), will

form an algebra that lives on its surface. The degenerate surfaces do have some

interesting properties ,but we will not concern ourselves with them here.

CATALOG  B
Quadric Surfaces Holding Two Distinct

Second-Order Binary Composition Algebras
I.

 

K1 = ∧;ε1
1 = 0,ε2

1 = 0,ε3
1 = 1

K2 = R3;ε1
2 = 1,ε2

2 = 0,ε3
2 = 0

F(x, y) = −hy2 + 2hxy + dx + y / 2 + (d2 − d) / 4h

II.

  

K1 = ∧;ε1
1 = 0,ε2

1 = 0,ε3
1 = 1

K2 = Gs1
;ε1

2 = 1,ε2
2 = 1,ε3

2 = 0

No Solution

III.

K1 = ∨;ε1
1 = 1,ε2

1 = 1,ε3
1 = 1

K2 = Gs1
;ε1

2 = 1,ε2
2 = 1,ε3

2 = 0

F(x, y) = hxy + d(x + y) + (d2 − d) / h
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IV:

  

K1:Either

ε1
1 = 1,ε2

1 = 0,ε3
1 = 1,or

ε1
1 = 1,ε2

1 = 1,ε3
1 = 1

K2:Either

ε1
2 = 0,ε2

2 = 0,ε3
2 = −1,or

ε1
2 = ε2

2 = ε3
2 = −1

All impossible.

V.

K1 = Ly:ε1
1 = 1,ε2

1 = 0,ε3
1 = 1

K2 = Xx :ε1
1 = 1,ε2

1 = −1,ε3
1 = −1

F(x, y) = a(x2 + y2 ) + dx + (1+ d)y + q

VI.

K1:ε3
1 = 0

K2:ε3
2 = 0

Two distinct algebras with ‘constant trace’. Impossible if both algebras

are sensitive ( 2-dimensional) . An insensitive algebra with a constant trace

must be a constant algebra Such pairs have also  been shown not to exist on any

quadric surface.
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VII:

  

K1 = R3:ε1
1 = 0,ε2

1 = 1,ε3
1 = 0

K2 = Xx :ε1
1 = ε2

1 = ε3
1 = −1

F(x, y) = 4bx2 + by2 − 2bxy − x − y / 2

VIII:   

K1 = Gs1
:ε1

1 = 1,ε2
1 = 1,ε3

1 = 0

K2 = Xx :ε1
1 = ε2

1 = ε3
1 = −1

F(x, y) = (−1+ 13)c / 6)(x2 + y2 ) + cxy + d(x + y) + q,where

q = (1 / 4h)((1− 2d)2 − (1+ 2 13 / 3)2 )
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PART II
1. Dynamical Properties of 2nd Order

Composition Algebras on Quadric Surfaces.
With the information presented in the preceding sections one  can

begin to describe the simplest features of the dynamics of algebras on surfaces.

As usual, we assume initially that h≠≠≠≠0 , c≠≠≠≠0. Let the equation of a surface S be

given by:

F(x, y) = ax2 + by2 + cxy + dx + ey + q

The coefficients will be  such that one or more of  binary composition

algebras can  be found on this surface. Let one of these be K , characterized by

its’ set of structure constants,   

ε1,ε2,ε3;δ = ε1 + ε2 − ε3

The attractive or repelling behavior of the iterate collection of

functions,  Ψ f  , at a specific composition point p=( zαααα,,,,    zββββ , zγγγγ))))    ,,,,    with zγγγγ    =f (zαααα

, zββββ    ) , is determined by the first and second derivatives Fx , Fy at that point.

Since we are iterating around algebras and not on specific real numbers,  an

important generalization to the notion of convergence in a single variable will

be introduced:  that of the εεεε-stable neighborhood of a point on the (x,y) plane.

Definition . Let  p = F( r,t ) be given. We will say that p is εεεε-stable, or

there is an εεεε-stable neighborhood around p if there exists a number εεεε    such that

α1 , β1 , α2 , β2 ≤ ε →
F(r +α1,t +β1)− F(r +α2,t +β2 ) < ε

Notice the relative  inequality for the increments αααα and ββββ , and the

strict  inequality on the increment for F. One sees immediately the purpose  of

this definition in the case that (i) s =r=t, that is, s is a fixed point, and
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(ii) Fx + Fy < 1. Given these conditions, the neighborhood of s will

be    εεεε-stable, and every value q of every perturbed iterate of F of the form

 q= F( ππππκκκκ        (s+εεεε , s))  will remain within the interval

( s+εεεε,s-εεεε    )  the epsilon-neighborhood around p.

Another way of looking is that is to observe that if h=F(m,n) is

any other point, and u= F(ππππk(m,n)) is some iterate which happens to fall within

an εεεε-neighborhood of s , then all iterates of F on u and s, of the form F(ππππk

(u,s)),  will remain in that epsilon -neighborhood. One can therefore replace

the idea of convergence of a point to a fixed point, or of a point to a periodic

set of points, by that of an iterate clone being trapped within the neighborhood

of a fixed point, or of an algebra of points, or of a sub-algebra of points.

Indeed, we will  be interested in  investigating  the presence of εεεε-stable sub-

algebras within a given composition algebra on a surface S. (In the case  in

which the order is 2 of course , all the proper sub-algebras are the fixed

points).

Definitions : Let S be a surface in 3-space define by an equation of the

form z= F(x,y), generally  a polynomial. Let there be an nth -order composition

algebra K = (Z, ° ) ,               Z=(z1,z2 ,z3 ,......zn ).  on S, and let   P = (zi, zj ,F(zi,

zj)= zij εεεε    Z  ) be a typical composition point on S. Then we will say that

(1) P is an attractive point if Fx + Fy < 1,(x, y) = (zα ,zβ )

(2) P is left, (right) , attractive if Fx < 1 ( Fy < 1 )

(3) P is borderline  if Fx + Fy = 1

(4) P is left, (right) , borderline if Fx = 1 ( Fy = 1 )

(5) P is controllable if Fx < 1 , Fy < 1 but Fx + Fy > 1. That is

to say, when P is both left and right attractive, but not attractive or borderline.

(6) P is superattractive if it is a critical point, that is ,when

Fx = 0 = Fy
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(7) P is repelling, repulsive or repellant, when Fx > 1, Fy > 1

(8) P is hyperbolic  when

   

Fx < 1, Fy > 1,or

Fx > 1, Fy < 1

Using this collection of terms , we return to the tables of families of

surfaces holding one or two second-order binary composition algebras, and

identify the dynamical characteristics of each element in their tables.

After a  general  discussion , we will  completely analyse the dynamics

of the first entry  in the table of the 7 families of surfaces,  to show how the

procedure is carried ou.The results for the other cases will then  be listed .

IX. General Considerations
A given 2- algebra K will have 4 entries in its standard table, which

become  points on the surface S :  P1=(z1 ,z1) , P2=(z1,z2) ,P3=(z2,z1),P4=(z2,z2 ) .

The relations between coefficients of F, common to all such algebras,  produce

simple expressions for the derivatives at these points.

P1:
Fx (z1,z1) = 2az1 + cz1 + d = 2az1 + ε2 − ak =

a(z1 + z1 − (z1 + z2 )) + ε2 = a(z1 − z2 ) + ε2.Since

c = δ / (z1 − z2 ),

∴Fx (z1,z1) = ε2 + aδ / c.Likewise

∴Fy(z1,z1) = ε1 + (b / c)δ

P2 :
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Fx (z1,z2 ) = 2az1 + cz2 + d = 2az1 + ε3 − ε1 − ak =

∴Fx (z1,z2 ) = ε3 − ε1 + (a / c)δ

Fy(z1,z2 ) = 2bz2 + cz1 + e =

2bz2 + ε1 − bk

∴Fy(z1,z2 ) = ε1 − (b / c)δ

P3 :

Fx (z2,z1) = 2az2 + cz1 + d = 2az2 + ε2 − ak

∴Fx (z2,z1) = ε2 − (a / c)δ .Likewise

∴Fy(z2,z1) = ε3 − ε2 + (b / c)δ

P4 . Using the above methods, we obtain:
Fx (z2,z2 ) = ε3 − ε1 − (a / c)δ .Likewise

\ Fy(z2,z2 ) = ε3 − ε2 − (b / c)δ

THEOREM XI : The two derivatives at each point of a second-

order binary composition algebra on a quadratic surface, are all simple

expressions ,linear in the structure constants of the algebra, and in the ratios a/c

and b/c.

2. Analysis of the Dynamics of the Algebra

K =

y
x z1 z2

z1 z1 z1
z2 z1 z2

= ∨;

ε1 = 0,ε2 = 0ε3 = 1,δ = −1, D = 0

I. F(x,y) = aP(x,y) +qQ(y) + R(x,y)=

a(x2 − y2 − k(x − y)) + q(1+ (y2 − ky) / z1z2 )) +

(y2 − xy + z1x − z2y) / (z1 − z2 )

For the purposes of describing the dynamical behavior in the
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neighborhood of the composition points P1...P4, it will be convenient to take

a,b,c and q as free parameters. Once these are chosen, then the values z1, z2 will

be completely determined. From the above equations we see that:

ε1 = 0,ε2 = 0,ε3 = 1,δ = −1, D = 0;

z1z2 = q / (a + b + c) = (q / c) / (µ +1)

z2 − z1 = 1 / c.So

z1(1 / c + z1) = q / (c(µ +1)),and

∴z1,z2 = (−1 / c ± (1 / c)2 + 4q / (c(µ +1))) / 2 =

= (−1± 1+ 4qc / (µ +1)) / 2c

It will generally be true that the values z1 ,z2 depend only on a,b,c, q

and the structure constants. Since the derivatives of the surface funtion at the

composition points depend only on the ratios a/c, b/c, and the structure

constants, we will not be interested in the specific values of the composition

points P1 ... P4, but only in these terms.

For the algebra K =

y
x z1 z2

z1 z1 z1
z2 z1 z2

, therefore , one has,

P1: f (z1,z1) = z1
f x = ε2 + δa / c = −a / c
f y = ε1 + δb / c = −b / c

P2: f (z1,z2 ) = z1
f x = ε3 − ε1 + δa / c = 1− a / c
f y = ε1 − δb / c = +b / c

P3: f (z1,z2 ) = z1
f x = ε2 − δa / c = +a / c
f y = ε3 − ε2 + δb / c = 1− b / c

P4: f (z1,z2 ) = z2
f x = ε3 − ε1 − δa / c = 1+ a / c
f y = ε3 − ε2 − δb / c = 1+ b / c

For P1 to be attractive, one must have a / c + b / c < 1. This limits

the ranges in which P2 and P3 will be attractive. Under the assumption that a/c
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is positive,<1, P2 will be attractive when

1− a / c + b / c < 1,or

1 > a / c + b / c > a / c > b / c

∴ b / c < 1 / 2,and1 / 2 < a / c < 1− b / c
The dual situation pertains to P3. Clearly we cannot have P1 , P2 and P3

all attractive. We can however make them all borderline by letting

a/c=b/c=+1/2. In that case P4 will be repellant. If P4 is attractive, then both a/c

and b/c are negative and

1 > 1+ a / c + 1+ b / c = 1− a / c +1− b / c

= 2 − ( a / c + b / c );

∴ a / c + b / c > 1
If P4 is attractive, then P1 is at most controllable, P2  and P3 are

hyperbolic. We can begin to examine what I tentatively call “circuits”. These

are schemas of “transmission” of perturbations between several or all of the

composition points of a surface algebra which remain within the εεεε-stable

neighborhoods around these points.

Since those algebras for which c = δδδδ    ====    0000        require a different kind of

analysis, we move next to Algebra IV on table I , that is to say

Gz1
=

y
x z1 z2

z1 z1 z2

z2 z2 z1
ε1 = 1,ε2 = 1,ε3 = 0,δ = 2, D = −1 / z2

Following the procedures established for Algebra I, we have:
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P1: f (z1,z1) = z1
f x = 1+ 2a / c

f y = 1+ 2b / c

P2: f (z1,z2 ) = z2

f x = −1+ 2a / c

f y = 1− 2b / c
P3: f (z2,z1) = z2

f x = 1− 2a / c

f y = −1+ 2b / c

P4: f (z2,z2 ) = z2

f x = −(1+ 2a / c)

f y = −(1+ 2b / c)

P1 attractive --> a/c,b/c  < 1. Then P2 is repelling, P3 is repelling, P4 is

attractive. Since this is the group among the second order algebras , one can

speak about the algebraic structure of “group dynamics 1“ . Let us also look at

the range -1<a/c<0 and 0<b/c<1. In this case P1 is hyperbolic, left attractive; Ps

is hyperbolic, right attractive; P3 is hyperbolic, left attractive and P4 is

hyperbolic, left attractive.

Algebra V:

R4 =

y
x z1 z2

z1 z1 z1
z2 z2 z1

ε1 = 0,ε2 = 1,ε3 = 0,δ = 1, D = −1 / z2

                                    
1For those who might think otherwise, this is not a paper in social
psychiatry!
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P1: f (z1,z1) = z1
f x = 1+ a / c

f y = 1+ b / c

P2: f (z1,z2 ) = z1
f x = −1+ a / c

f y = −b / c
P3: f (z2,z1) = z2

f x = 1− a / c

f y = b / c

P4: f (z2,z2 ) = z1
f x = −(1+ a / c)

f y = −b / c

-1<b/c<+1 : In this range all four points are right attractive. When

-1<a/c<0, P1 and P2 are left attractive

0<a/c<1, then P3 and P4 are right attractive. Investigating the conditions

under which a point is totally attractive we see that in the range -1<a/c<0 and -

1<b/c<+1, we have

f x + f y = 1+ a / c + b / c < 1

→ a / c + b / c < 0,or

−1 < a / c < − b / c

In the range -1<b/c<+1 , and -2<a/c<-1, we have

f x + f y = −1− a / c + b / c < 1

→ a / c + b / c < 2 → a / c + b / c < 2.

It follows that the conditions for the existence of a pair of attractive

points are:

b / c < 1;−2 < a / c < 0.Either

a / c > b / c ,(−1 < a / c < 0),or

a / c + b / c < 2(−2 < a / c < −1

∴P1,P4attractive→ P2,P3hyperbolic

P1,P4hyperbolic → P2,P3attractive

Algebra VI:
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Xz2
=

y
x z1 z2

z1 z2 z2

z2 z2 z1
ε1 = 0,ε2 = 0,ε3 = −1,δ = 1, D = −(z1 + z2 ) / (z2 − z1)

P1: f (z1,z1) = z2

f x = a / c

f y = b / c

P2: f (z1,z2 ) = z1
f x = −1+ a / c

f y = −b / c
P3: f (z2,z1) = z1
f x = −a / c

f y = −1+ b / c

P4: f (z2,z2 ) = z2

f x = −(1+ a / c)

f y = −(1+ b / c)

0 < a/c , b/c < 1, with a/c + b/c <1  ----> P1 attractive----> P4 repelling

----> either P2 attractive and P3 controllable(b/c<a/c) ,or P2 controllable

and P3 attractive( b/c > a/c ).

This covers all of the algebras listed in Table I for which     c ≠≠≠≠0. All

second order composition algebras for which c = 0 are insensitive, or, shall we

say, 1-dimensional.  To all intents and purposes we are dealing with single-

variable dynamics, a subject being studied with great enthusiasm . The

particular features of 1-dimensional dynamics on a 2-surface are interesting,

but we will not be looking at them here.

Finally we briefly examine the dynamics surrounding the

composition points on surfaces holding 2 distinct 2nd-order composition

algebras. I refer the reader to Catalog B:

I.
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K1 = ∧;ε1
1 = 0,ε2

1 = 0,ε3
1 = 1

K2 = R3;ε1
2 = 1,ε2

2 = 0,ε3
2 = 0

F(x, y) = −hy2 + 2hxy + dx + y / 2 + (d2 − d) / 4h
P1: f (s1,s1) = s1; f x = 0; f y = 1 / 2

P2: f (s1,s2 ) = s1; f x = 1; f y = −1 / 2

P3: f (s2,s1) = s1; f x = 0; f y = 3 / 2

P4: f (s2,s2 ) = s2; f x = 1; f y = 1 / 2

P5: f (s1,s4 ) = s4; f x = 1; f y = −1 / 2

P6: f (s4,s1) = s1; f x = 0; f y = −1 / 2

P7: f (s4,s4 ) = s1; f x = −1; f y = −1 / 2

III.

K1 = ∨;ε1
1 = 1,ε2

1 = 1,ε3
1 = 1

K2 = Gs1
;ε1

2 = 1,ε2
2 = 1,ε3

2 = 0

F(x, y) = hxy + d(x + y) + (d2 − d) / h
P1: f (s1,s1) = s1; f x = 1; f y = 1

P2: f (s1,s2 ) = s2; f x = 0; f y = 1

P3: f (s2,s1) = s2; f x = 1; f y = 0

P4: f (s2,s2 ) = s2; f x = 0; f y = 0

P5: f (s1,s4 ) = s4; f x = −1; f y = 1

P6: f (s4,s1) = s1; f x = 1; f y = −1

P7: f (s4,s4 ) = s1; f x = −1; f y = −1

V.
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K1 = Ly:ε1
1 = 1,ε2

1 = 0,ε3
1 = 1

K2 = Xx :ε1
1 = 1,ε2

1 = −1,ε3
1 = −1

F(x, y) = a(x2 + y2 ) + dx + (1+ d)y + q

Since both algebras are 1-dimensional, we will not examine this

situation here. There are two more families of surfaces in Table II, but there is

no need to describe their dynamical properties in  detail. Like the others , the

derivatives at each composition point can be expressed as real numbers , from

which their dynamical properties  are immediately apparent .
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PART III
1. Summary of  Parts I and II :

The point of departure for this investigation  is in the observation that the

natural extension of the periodic and fixed points of univariate dimensional

dynamical systems to  bivariate systems,  are the finite nth-order  composition

algebras, often referred to in the literature as  “groupoids”. We do not advocate this

terminology  as there is little that is  group-like about these objects. An n
th
 order

binary composition algebra K , can be represented by a set of indeterminates ,

Z = {z1 , z2 ,........ , zn }, closed under some binary operation, °  , with  z
i
 ° z

j
 = z

ij
  __Z.

Using the notation Kn = { Z, ° } this algebra can be  “represented”  by polynomials  z =

P(m)(x,y) of various degrees m , over the complex numbers, such that for some set or

sets of specific values { zi } I = 1,2......n , one has   P(zi ,zj ) = zij  εεεε    Z.

The extension of the iterate set of  functions derived from a function , w = f(z),

of a single variable will then be the clone  of compositions of P with itself :

ΨΨΨΨP ={  x,y ,P(x,x), P(x,y), P(y,x) , P(y,y), P(x,P(x,y))….}

 ={  P(ππππ
0
), P(ππππ

1
) , P (ππππ

2
 ) ,......... }  In part I these clones are notated  by the symbol ΨΨΨΨP,

ΠΠΠΠ(x,y). Symbolically,

ΨΨΨΨP = P (ΠΠΠΠ___

  ΨΨΨΨP  in turn gives rise to an associated clone of algebras,

K K Kn n nj0 1, ,...., ,   that relate to ΨΨΨΨP like  a residue class

(mod P).  The elements of ΨΨΨΨP can be enumerated via the Cantor J function; the

description of the residue classes then becomes a problem  in Diophantine equations .

The rest of part  I is taken up with the detailed study of the representation of

second-order composition algebras on quadric surfaces of the  form

z = ax2 + by2 + cxy + dx + ey + q . There are 7 such distinct algebras. We

distinguish between 1-dimensional  (right or left insensitive)  , and 2-dimensional

algebras, according to whether they are responsive  to one or two variables. The
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complete description of those families of quadratic surfaces holding each algebra is

presented, as well as a catalog that lists those surfaces holding two or more algebras,

Finally, the dynamic profile at each composition point on each surface is

computed, and the points are classified according to whether they are attractive,

repellant, borderline, controllable or hyperbolic.

2. On the relationship of the order of a
composition  algebra to the degrees of its

polynomial representations
Let  Kn = { Z, ° } be some finite binary composition algebra. The number n of

elements in Z, will be called the order of the algebra. When K can be represented on

a polynomial surface z P x y m a x yij
i j

i j m

m
= =

≤ + ≤
∑( , ; )

0
    , then the exponent m will

be called the degree of the representation. If m is the smallest such exponent for the

given algebra, then we can speak of m as being the “degree” of K itself.

Example: The following algebra will not be found on any quadric surface, for

any  distinct  values  z
1  , z2     

,  z3  :

K =

y
x z1 z2 z3

z1 z1 z2 z1

z2 z1 z2 z2

z3 z1 z2 z3

The reason for this is simple: it will be shown  that  the standard table of  3-

algebra on a 2-surface obeys  a “diagonal relation”

z12 + z23 + z31 = z21 + z32 + z13 = L

When applied to this algebra, one  concludes that

z
1
 = z

2 , which is prohibited in a faithful representation.

The coefficients  aij of the mth degree polynomial P(x,y) can be treated as free

parameters. The general polynomial in two variables of the mth degree has k=
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(m+1)(m+2)/2 coefficients  , as is easily verified  by mathematical  induction, (some of

these may of course be zero). The standard table T of an n
th
 order composition algebra

will has n2 entries. The representation of the algebra Kn on an m
th
 degree polynomial

surface produces a system of n
2
 equations in  n + (m+1)(m+2)/2 variables:

Eαβ :am0zα
m + a0mzβ

m + am−1,1zα
m−1zβ +

am−2,2zα
m−2zβ

2 +...+a0,1zβ
1 + a00(= q)

= zαβεZ = {z1,z2,.......,zn}

α ,β = 1,2,3,.........n

LEMMA:
If RK

n = {aij ;zγ ;0 ≤ i + j ≤ n;γ = 1,2,...n)  is any polynomial

representation of the nth order algebra K, then

  R a
h

ha hz i j n nK
n

h ij i j= < + ≤ =+{ ( ), , ; ; , ,... )( )
1 0 1 200 γ γ  , where h

is any non-zero number, is also a representation. We might call this property

polynomial homogeneity  . Because of this Lemma, the number of independent

variables in the system E is reduced to

νννν     = (m+1)(m+2)/2  + n -1

Let us examine the table of values for the number of table entries ,n2 , beside

the number of coefficients (n+1)(n+2)/2, up to n = 12
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        TABLE I

n m n m m, ( )( ) /

*

* *# #

! ! !

@

@

2 1 2 2

1 1 3

2 4 6

3 9 10

4 16 15

5 25 21

6 36 28

7 49 36

8 64 45

9 81 55

10 100 66

11 121 92

12 144 105

+ +

Interesting situations  of  have been given diacritical marks:

* (i ) 3-algebras on 2-surfaces. In this case, the number of table entries is

9, while the number of variables is 6 (coefficients) + 3( roots ) is also 9. However, by

the above lemma, the total number of free variables is only 8. Because of this fact

only certain marginal 3-algebras  can be represented on 2-surfaces. These algebras

will be the subject of the next section  .

#(ii) 3-algebras on 3-surfaces. The #of table entries is 9, while the number  of

free coefficients is 10.

@(iii) 6-algebras on 7th degree surfaces. Here the number of table entries = the

number of coefficients = 36. This situation is not repeated again until we come to

algebras of order 204 (=12x17), and surfaces of degree 287 (!  m2 = (12x17)2 =
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(288x289)/2) . The general solution is equivalent to  all solutions of equations of the

form

k2 - 8m2 = 1, where k = 2n+3.

(iv)  5-algebras on 5
th
-degree surfaces. This case is  unique ,since :  n2 =

(n+1)(n+2)/2  + n -1 ; the number of independent variables is exactly equal  to the

number of equations . This is of great interest though it is probably very difficult to

deal with . The indications suggest that , for the general fifth order algebra, the

number of representations on 5th degree surfaces is given by a finite number of points

in projective 4-space P4 =( p
1
, p

2
, p

3
, p

4 ), where pj = zj / z5 .

Case (iii) is the simplest, while Case (ii) shares  essentially the same features:

THEOREM XI :
If p= (z1,.....,z6 ) is a general point in complex C6 space, let D6 be that

subspace consisting of all points in  C6   for which the determinant

∆ = ≠ < + ≤ =

=

z z i j

z z z z

z z z z

z z z z z

z z z z z

i j
α β α β0 0 7 1 2 6

1

1

1

1

1
7

1
7

1
7

1
1

2
7

2
7

2
7

2
1

1
7

2
7

1
6

2
1

2
1

5
7

6
7

5
6

6
1

6
1

, , , , ,..

... ...

... ...

... ... ... ... ... ... ...

... ...

... ... ... ... ... ... ...

... ...

does not equal zero. Then , if p εεεε        D 6 , and K6 is any 6th order algebra, there exists a

unique surface of 7th degree z = S(x,y), that holds the algebra K
6
 and is specified on the

values z1,....z6.

The proof  consists of a simple application of linear algebra. There is a

corresponding theorem for the 3-algebras on 3rd degree surfaces:

 Let q = a
00

 be given , and let the point p = { z1, z2, z3 } be so chosen that the determinant
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∆ = ≠ < + ≤ =

=

z z i j

z z z z z z z z z

z

z

z z z z z z z z z z z z

z z

z z z z

i j
α β α β0 0 3 1 2 3

1
3

1
3

1
3

1
3

1
2

1
2

1
2

1 1

2
3

3
3

1
3

2
3

1
2

2 1 1
2

1
2

2
2

1 2 1 2

1
3

3
3

3
3

2
3

3

, , , , ,

... ...

... ...

... ...

...

...

...

... ... 22

 does not equal zero. Then, for any given 3-algebra K3   there is a unique 3rd

degree surface ,

S(x,y) = z -q= ax3+by3+cx2y+dxy2+ex2+fy2+gxy+hx+iy, holding K3 at the specified

points ( z
αααα    , zββββ    , zααααββββ    =S(z

αααα        , zββββ    ))

zγγγγ εεεε  p, γγγγ  = 1,2,3 . The result is once again based on the fact that the number of free

coefficients in a 3rd degree polynomial of two variables, less its constant term, is

equal to the number of tabular entries of a 3rd order algebra.

It can be shown that this determinant is equal to :

∆ = Az1z2z3(z1 − z2 )4(z2 − z3)4(z3 − z1)4 •

(z1
2z2 − z1z2

2 + z2
2z3 − z3

2z2 + z3
2z1 − z1

2z3)•

(2(z1
2 + z2

2 + z3
2 ) + z1z2 + z1z3 + z2z3)

where A is a constant.

It follows that if p = (z1, z2, z3 )  is not on the above  collection of surfaces, then

there is a 1-1 correspondence between 3-algebras specified on the values of p and 3-

surfaces, z=f(x,y)  passing through the set of composition points (x,y, f(x,y))

There are other simple relationships between order and degree to be

discovered in the columns of Table I . An 8th order algebra has 64 tabular entries,
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while an 11th order equation has 66 coefficients. This situation resembles that of the

2-algebras, with 4 entries, on 2-surfaces, with 6 coefficients.

A 10th order algebra has 100 entries, while a 13th order equation in 2 variables

has 91 coefficients . Since 91+10 = 101, we have a situation similar to that of the 5th

order algebras on  5th degree surfaces, wherein the number of really independent

variables is equal to the number of table entries.  Therefore  [ (m+1)(m+2)/2]+n-1= n2 ,

or (m+1)(m+2) = 2(n2 - n+1) . We will solve the corresponding Diophantine equation

in just a moment, but first we will find it useful enlarge Table I to the value N= 40,

listing the quantities N or M , N2 , N2 - N+1 and (M+1)(M+2)/2 :
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TABLE II
n m n n n m m, ( )( ) /2 2 1 1 2 2

1 1 1 3

2 4 3 6

3 9 7 10

4 16 13 15

5 25 21 21

6 36 31 28

7 49 43 36

8 64 57 45

9 81 73 55

10 100 91 66

11 12 111 78

12 144 133 91

13 169 157 105

14 196 183 120

15 225 211 136

16 256 241 153

17 289 273 171

18 324 307 190

19 361 343 210

− + + +
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20 400 381 231

21 441 421 253

22 484 463 276

23 529 507 300

24 576 553 325

25 625 601 351

26 676 651 378

27 729 703 406

28 784 757 435

29 841 813 465

30 900 871 496

31 961 931 528

32 1024 993 561

33 1089 1057 595

34 1156 1123 630

35 1225 1191 666

36 1296 1261 703

37 1369 741

38 780

39 820

40 1600 1561 861

.............. ...............

.

.

.

. . . .

Let Cm represent the number of coefficients in a bivariate  polynomial of

degree m .
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Case 1 :   Cm = n2. The only solution of this is clearly m=7, n = 6. In  this

case  one can identify a unique surface for a given algebra and specification of

elements.

Case 2:   Cm = n2 + 1. Here one needs only specify the free constant q to

obtain unique surfaces for given algebras and specified elements. The solutions of

this are n=m=3 , and m=24, Cm = (25 . 26) /2 = 325 = (18)2 + 1, so   n= 18.

Case 3:    Cm = n2 - n + 1. This  situation relates to a classical problem in

number theory. We require:

(i) (m+1)(m+2) = 2(n2 - n+1) , which simplifies to

(ii) m(m+3) = 2n(n-1). Let m = an+b, b<n, a ≥≥≥≥ 0, all integers. Substituting  in (ii)

gives

(iii) (a2 − 2)n2 + (2ab + 3a + 2)n + b(b + 3) = 0

For a=0 ,m must be less than n, and there is no solution. When a=1, there is only

one solution, b=0, n=5,m=5. Proof: m<n  ---> m+3 >2(n-1), or

n ≥≥≥≥ m ≥≥≥≥ 2(n-1)-3, or n> 2(n-1)-3.  Continuing, we get

n+3 > 2n-2, n ≤≤≤≤ 5, or n = 5.

Now a cannot be larger than 1; the coefficient

(a2 -2 ) at the far lefthand guarantees that for a ≥≥≥≥ 2 the whole expression is positive,

hence not equal to 0.

Setting a= 1 we can solve a simple quadratic equation that gives us n in terms of b.

The solution is

n = (5 + 2b ± (5 + 2b)2 + 4b(b + 3)) / 2

The term inside the square root is 8b2 + 32b + 25 = g2 . Define d by d = 2(b+2).

The above expression then reduces to

2d2 - g2 = 7

The problem therefore reduces to  adumbrating  the even solutions to this

classical equation. The first few solutions are:

d= 4      g = 5     n = 5     m = 5

d=8       g= 11    n = 10   m = 12
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d=20     g = 19   n  = 27   m = 36

...........

We summarize these results in the following

THEOREM XII:
When  (i)   2d2 - g2 = 7

    (ii)   b = d/2  - 2

             (iii)  n = (5+2b+ √√√√(8b2 + 32b + 25) ) / 2

    (iv) m = n+b

then the system of equations

Eαβ : am0zα
m + a0mzβ

m + am−1,1zα
m−1zβ +

am−2,2zα
m−2zβ

2 +...+a0,1zβ
1 + a00(= q)

= zαβ ε Z = {z1,z2,.......,zn}; (α ,β = 1,2,3,.........n)

has  n2 free variables for n2 equations. If we fix q, where q is the constant term, then

any algebra Kn will lie on at most a finite number ( perhaps none) of non-degenerate

surfaces of mth degree in 3 space passing through the point ( 0, 0, q ) .

3. Representations of Trivariate  Algebras
On Quadric Surfaces

We have singled out this case as one of exceptional interest  to us for several

reasons, among which:

(a ) It is very simple. Many of the properties of these algebras and

surfaces resemble those of the 2-algebras on quadratic surfaces

(b) In the situation of 1-dimensional rational maps, the quadratic case is

the most interesting, being in some ways central to the dynamics of all rational maps.

(c) Since Cm = 6 , n = 3 and n2 = 9 , that is to say,

# Coefficients + # Elements = # Tabular Entries

, one almost , but not quite, obtains a 1-1 correspondance between algebras and

surfaces. Write, as before:
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(α )az1
2 + bz1

2 + cz1
2 + dz1 + ez1 + q = z11

(β )az2
2 + bz2

2 + cz2
2 + dz2 + ez2 + q = z22

(γ )az3
2 + bz3

2 + cz3
2 + dz3 + ez3 + q = z33

(δ )az1
2 + bz2

2 + cz1z2 + dz1 + ez2 + q = z12

(ε )az2
2 + bz1

2 + cz2z1 + dz2 + ez1 + q = z21
(ς )az1

2 + bz3
2 + cz1z3 + dz1 + ez3 + q = z13

(η)az3
2 + bz1

2 + cz3z1 + dz3 + ez1 + q = z31

(θ )az2
2 + bz3

2 + cz2z3 + dz2 + ez3 + q = z23

(µ )az3
2 + bz2

2 + cz3z2 + dz3 + ez2 + q = z32
h = a + b + c

l = d + e

k1 = z2 + z3

k2 = z1 + z3

k3 = z1 + z2

Once again the first 3 equations  is the outer set  , while the remaining 6 are the

inner set  . Given the values of the coefficients a, b, c, d, e, and q, there is enough

information in the inner set to derive the three elements z1  , z2  ,z3  , which may be

called the “roots” of the algebra on the surface :  those values at which the surface in

some sense “intersects” the algebra.

Since the number of really independent variables of the system is only 8, these

may be inconsistent with the values of the roots which can be derived by

manipulating the inner equations. As it turns out, remarkably, the consistency of the

roots as derived from the outer equations with the entire system, is equivalent to a set

of conditions tied up with the single coefficient , c . The c-conditions completely

determine which 3- algebras can or cannot exist on a 2-surface.  After a fundamental
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analysis of the system and consideration of several important special cases,  the

following theorem will have been proven by the end of the paper. Through it,  the

division of  3-algebras into those which can , and those which cannot exist on a 2-

surface may be demonstrated :

Culminating Theorem :
A:  This equation, called the “diagonal relation”, must

hold for any 3-algebra on a 2-surface:

z12 + z23 + z31 = z21 + z32 + z13 = L

 B:  If a 3-algebra K exists on a surface for which c = 0,

then this set of equations must hold for all values of the indices  αααα    ,,,,    ββββ,,,,    γγγγ    ,,,,    δδδδ    εεεε {1,2,3} :

zαβ + zγδ = zγβ + zαδ
C: If a 3-algebra K exists on a surface for which c ≠≠≠≠ 0 , then

(A) must hold, but (B) cannot be satisfied by any (non-trivial) combination of the

indices

αααα    ,,,,    ββββ,,,,    γγγγ    ,,,,    δδδδ    εεεε {1,2,3} .

D:  If B holds for some sets of indices but not for others,

or if A is not satisfied, or both, then the algebra K cannot be realized on any 2-

surface.

Since condition D can be verified by a quick inspection, we have a method for

deciding if any 3-algebra can be represented on a 2-surface. The class R of 3-algebras

representable on 2-surfaces is a sub-class of the general class T of all 3-algebras

which, as we have seen, are representable in the greatest generality by functions of 3

variables.

The Outer Equations
LEMMA I: If  h  ≠≠≠≠ 0 , there cannot be 3 identical trace entries, z11 = z22 =

z33 .

PROOF: A quadratic equation can’t have 3 distinct roots

LEMMA II: If  h ≠≠≠≠ 0 , one cannot have z11 = z1 , z22 = z2 ,
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z33 = z3 .

PROOF: Same as above. However in this case the quadratic equation in question is a

different  one. Exercise left to the conscientious reader!

In the situation in which h = 0, one cannot use the outer equations to determine

the values of the roots. The class of 3-algebras for which h does = 0 is interesting,

and will be considered separately. For the moment,  unless otherwise indicated, we

will assume that  h ≠≠≠≠ 0.

LEMMA III:
(i) The traces  of the standard tables of all 3-algebras   on  2-surfaces for

which  h ≠≠≠≠ 0 are isomorphic to one of these 5:
T1 = (z1,z2,z1)

T2 = (z2,z1,z1)

T3 = (z1,z1,z2 )

T4 = (z1,z3,z2 )

T5 = (z2,z3,z1)

     (ii) There do exist algebras with traces

(z1 , z1 , z1 ) and (z1 , z2 , z3 ) on surfaces for which h = 0.

PROOF :   If K has 2 fixed points then  assume them to be z1 and z2  . The entry

for z33  cannot then be z3 and must therefore be either z1 or z2  .  ( The traces Ta = ( z1, z2

, z1 ) and

Tb = ( z1, z2, z2 )  are equivalent. )

If K has one fixed point then the permissible traces are  T3 or T4 ,  the trace ( z1 ,

z1 , z1  )  being ruled out.  All other traces with a single fixed point are equivalent to

these.

Finally, all traces with no fixed points are isomorphic to  either  T2 or T5  .

(ii) Trivially, the plane surface whose equation is given by f(x,y) = z1 =

Constant, will hold the constant algebra Oz1

3
, and will therefore have constant trace.

Likewise,  the plane surface whose equation is given by f(x,y) = x , will have trace

( z1, z2, z3 ), where these 'roots' can be taken as any three distinct values.



#75...
Since the trace entries are solutions of the outer equations, we may use these 5

trace forms to derive solutions for the 3 roots with respect to each one of them . In all

cases but one, that of T5, these turn out to be very simple expressions in the

parameters a,b,c,d,e,q. The case of T5 is much  more complicated, but may be reduced to

the solutions of a 6th degree equation.

Expressions for the roots z1 , z2, z3 ,
in terms of the parameters a,...q ,
and  traces T1,...T5  .

I.
T1 = (z1,z2,z1):

(α )hz1
2 + lz1 + q = z1

(β )hz2
2 + lz2 + q = z2

(γ )hz3
2 + lz3 + q = z1

z1, z2 are the roots of the fixed point equations, and are given by :

z1,z2 = (1− l ± (1− l)2 − 4qh) / 2h

= (1− l ± g) / 2h
  

z3 can be either of the two roots of the third equation, which depends on the

two possible values of z1, so that there are four possible expressions z3. However,

since two of these duplicate the values for z1 and z2 , we obtain two distinct solutions

for z3 which we may call z3 , z4:



#76...

z3,z4 = (−l ± l2 − 4h(q − z1)) / 2h

= (−l ± l2 − 4h(q − (1− l ± g) / 2h)) / 2h

= (−l ± l2 − 4hq + 2 − 2l + 2g) / 2h

= (−l ± (l −1)2 +1± 2g − 4hq) / 2h

= (−l ± (l −1)2 +1± 2 (l −1)2 − 4qh − 4hq) / 2h

= 1 / 2h(−l ± ( 1+ ( (l −1)2 − 4qh) )2

= 1 / 2h(−l ± (l −1)2 − 4qh)

∴z3,z4 = (−1− l ± (l −1)2 − 4qh) / 2
= (−1− l ± g 2)

This result was also obtained in the first paper by other means.

II.
T2 = (z2,z1,z1):

(α )hz1
2 + lz1 + q = z2

(β )hz2
2 + lz2 + q = z1

(γ )hz3
2 + lz3 + q = z1

Combining equations ( αααα ) and ( ββββ)  with  the results of Part I, we see that:
h(z2 + z3) + l = 0;z2 + z3 = −l / h

z3 = −l / h − z2 = (1− l ± (1− l)2 − 4qh − 4) / 2h

Since Equation (ββββ) = Equation (γγγγ) :

 

h(z2 + z3) + l = 0;z2 + z3 = −l / h

z3 = −l / h − z2 = (1− l ± (1− l)2 − 4qh − 4) / 2h

III.
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T3 = (z1,z1,z2 ):

(α )hz1
2 + lz1 + q = z1

(β )hz2
2 + lz2 + q = z1

(γ )hz3
2 + lz3 + q = z2

z1 is  the only fixed point. From Part I  we have :

z1 = (1− l ± (1− l)2 − 4qh) / 2h

z2 = −(1+ l ± (1− l)2 − 4qh) / 2h

z1 + z2 = k3 = −l / h;

z2 = −l / h − z1,so

hz3
2 + lz3 + q = −l / h − z1

∴z3 = (1− l ± (l2 − 4qh − 4l − 4hz1)) / 2h

=............= 1 / 2h(−l ± (1− g)2 − 4

IV.

T4 = (z1,z3,z2 ):

(α )hz1
2 + lz1 + q = z1

(β )hz2
2 + lz2 + q = z3

(γ )hz3
2 + lz3 + q = z2
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z1 is a fixed point, while z2 , z3 form a “toggle switch” set. Therefore:

z1 = (1− l ± (1− l)2 − 4qh) / 2h

z2,z3 = (−1− l ± (1− l)2 − 4qh − 4) / 2h

V.
T5 = (z2,z3,z1):

(α )hz1
2 + lz1 + q = z2

(β )hz2
2 + lz2 + q = z3

(γ )hz3
2 + lz3 + q = z1

Although this system of equations doesn’t admit of simple solutions in terms of

the parameters, there are some simplifying relations . Subtracting (ββββ) from (αααα) gives:

(α )− (β ) = z2 − z3 = (z1 − z2 )(h(z1 + z2 ) + l),or

h(z1 + z2 ) + l = (z2 − z3) / (z1 − z2 )

Likewise, subtracting (g) from (b) and rearranging gives us:

h(z2 + z3) + l = (z3 − z1) / (z2 − z3)

= −1− (z1 − z2 ) / (z2 − z3)
     Therefore,  h(z2 + z3) + l = −1−1 / (h(z1 + z2 ) + l)

Working through all the arithmetic we end up with this complicated expression:

z =

−(h2z2
2 + h2z1z2 + h(l +1)z1 + h(2l +1)z2 + l2 + l +1)

h(h(z1 + z2 ) + l)

Plug this into the right side of (ββββ), and substitute the left-hand side of (αααα) for

the variable z2 in (ββββ). Our resulting equation will be of the 6th degree in z1.
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4. Restrictions On  3-Algebras Representable On
Quadric  Surfaces in 3-Space.

THEOREM XIII:
(a) If K3 is a 3-algebra on a 2-surface, with standard table matrix  M = {

zααααββββ    } , αααα,,,,ββββ = 1,2,3, then we must have:

z12 + z23 + z31 = z21 + z32 + z13 = L

This will be referred to as the “diagonal relation”

PROOF: Referring to the tables of the outer and inner equations, we see

that:

(δ ) + (θ ) + (η) = z12 + z23 + z31 = az1
2 + bz2

2 + cz1z2 + dz1 + ez2 + q

+az2
2 + bz3

2 + cz2z3 + dz2 + ez3 + q

+az3
2 + bz1

2 + cz3z1 + dz3 + ez1 + q +

az2
2 + bz1

2 + cz2z1 + dz2 + ez1 + q = (ε ) + (ς ) + (µ ) =

z21 + z32 + z13

Q.E.D.

LEMMA:  If T is the trace and L the value of the diagonal relation, then :
T − L = (z11 + z22 + z33)− (z21 + z32 + z13) =

c((z1
2 + z2

2 + z3
2 )− (z1z2 + z1z3 + z2z3))

PROOF: Add the outer equations and subtract from the sum one of the two

combinations that form the diagonal sum L.

THEOREM XIV :
(a) If c= 0, then T=L

          (b) If z1 ,z2 ,z3 are all real numbers , then

c > 0 → T > L & c < 0 → T < L

(a) follows immediately from the lemma; (b) follows from the fact

that the right hand expression in the lemma is positive definite. Note that the theorem
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is no longer true if we allow the roots to be complex. We have thus uncovered a

distinction between ‘real’ and ‘complex’ dynamics of 3-algebras on a 2-surface.

This theorem is useful for determining  whether or not a given 3-algebra with

real roots can live on a real  2-surface. For example, if c>0, z1 is the smallest of the 3

real roots ,and the table has  traces T1 , T2 , or T3 ,  then we must also have

z1 = z12 = z21 = z13 = z31 It is not difficult to show that this is incompatible

with both c ≠≠≠≠ 0, and also  c=0. The only possibility then is that this is the constant

algebra Oz1, whose  trace is

T= (z1,  z1 , z1 ) .

5. Expressing the Coefficients
in Terms of the Roots

When the set of 9 equations is solved for the 6 coefficients in terms of the 3

roots, one derives quite simple expressions for a,b,d,e,q. The evaluation of c however

gives us a long chain of equalities which must be adjusted to each other. This sets up

relations between the roots which  yield  definitive criteria for deciding whether or

not any given 3-algebra K can be represented on some 2-surface at all.  Obviously the

diagonal relation is one such criterion.  Another criterion is, obviously: if some of the

c-relations imply that c=0, while others imply

 that  c  ≠≠≠≠  0, then the algebra in question clearly cannot be represented on any 2-

surface.

We shall show that these criteria are both necessary and sufficient.

Definition : Consider the the diagonal relation:

 z12 + z23 + z31 = z21 + z32 + z13 = L

One chooses values for these double-index terms within the set Z3 = ( z1, z2, z3 )

. If the left hand side of the relation is   identical  to the right side when  choices are

treated as indeterminates, then we will say that the two sides  are formally equal .

However, suppose we let
z12 = z23 = z31 = z1
z21 = z1;z32 = z2;z13 = z3
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This choice of the diagonal terms will be compatible with the diagonal

relation if we restrict the roots by the equation :

(I):   z1 = (z2 + z3) / 2 . In this case , z1 will be called the averaging

element .

We may also select a combination of entries of the form:

  
z12 = z23 = z31 = z1
z21 = z2;z32 = z2;z13 = z3

Then the roots will be related by the equation

(II): z1 = (2z2 + z3) / 3

In these two cases, which are , save for permutations on the indices, the only

ones, we will say that the two sides are algebraically  identical  , and say that the

diagonal relation is algebraically  satisfied  .

THEOREM XV : (I) and (II) and all of their the variants obtained by

permutations of  the indices are  mutually exclusive. Since there are 3 forms of (I) and

6 forms of (II) this means that there are 9 mutually exclusive  possibilities for an

algebraic  solution of the diagonal relation.

PROOF:   It  is clearly that the variants of (I) must be mutually exclusive ( It

being always assumed that the roots are distinct ), since if one among 3 distinct

quantities is the average of the 2 others, neither of the other two can also be the

average of the remaining ones .  A similar argument shows that the 6 variants of 2

must also be exclusive. We need therefore only examine the following cases

(i) z1 = (z2 + z3)
2 & z1 = (2z2 + z3)

3
(ii) z1 = (z2 + z3)

2 & z2 = (2z1 + z3)
3

(iii)z1 = (z2 + z3)
2 & z2 = (z1 + 2z3)

3
All three  cases lead to the conclusion that

z1 =z2 =z3 , and we may consider the theorem proven.

The c-Relations
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THEOREM XVI :  If K is any 3-algebra on a 2-surface with equation

given by

z = f (x, y) = ax2 + by2 + cxy + dx + ey + q

,then
c = (zαβ + zγδ − zγβ − zαδ ) / (zα − zγ )(zβ − zδ )
α ,β ,γ ,δ = 1,2,3;α ≠ γ & β ≠ δ

PROOF: The proof  follows immediately from  the addition and subtraction of the

equations corresponding to the double-index terms:
zαβ + zγδ − zγβ − zαδ =

(azα
2 + bzβ

2 + czα zβ + dzα + ezβ + q) +

(azγ
2 + bzδ

2 + czγ zδ + dzγ + ezδ + q)−

(azα
2 + bzδ

2 + czα zδ + dzα + ezδ + q)−

(azγ
2 + bzβ

2 + czγ zβ + dzγ + ezβ + q)

= c(zα zβ + zγ zδ − zα zδ − zγ zβ )

= c(zα − zγ )(zβ − zδ )

Very few of these equations are independent. We will show later that they

reduce to only 3 independent equations,

( including the diagonal relation). For the moment we will use these relations to

completely characterize 2 classes of algebras of special interest:

(1) Those for which c=0, h ≠≠≠≠ 0

(2) Those for which c = h = 0

Theorem XVII : c= 0 for all 1-dimensional algebras

Proof: If K3 is a 1-dimensional 3-algebra, then f(x,y) = g(x), or f(x,y) = g(y) for

all combinations of the 3 roots. Assuming the former case ( right-insensitive), then:
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z11 = f (z1,z1) = g(z1) = f (z1,z2 ) = z12

z21 = f (z2,z1) = g(z2 ) = f (z2,z2 ) = z22

Therefore
z11 + z22 − z12 − z21 = 0

This is the c-relation  for c=0   Q.E.D.

Lemma : If c=0 and all of the terms in any row, or in any column, are identical,

then K is a 1-dimensional algebra.

Proof: With no loss of generality, let us say that z11=z12=z13=zαααα. Then:

az1
2 + bz1

2 + dz1 + ez1 + q

= az1
2 + bz2

2 + dz1 + ez2 + q

= az1
2 + bz3

2 + dz1 + ez3 + q;so,

b(z1 + z2 ) + e = 0

b(z2 + z3) + e = 0

∴b(z1 − z3) = 0,and,because

z1 ≠ z3,

∴b = 0,and,e = 0

This proof can be generalized to all other cases.

Theorem XVIII: If c=0, h  ≠≠≠≠ 0 , and K is 2-dimensional, then K must be of the

form:
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K =

y
x z1 z2 z3

z1 zγ zβ zβ
z2 zβ zα zα
z3 zβ zα zα

with
α ,β ,γ ∈(1,2,3),and
zβ = (zα + zγ ) / 2

PROOF:  This is the first long proof in this paper!  I’m sure it can be simplified. Here

is the long,lazy proof, with every intention, time willing,  of reducing it to  a few

lines and a footnote!

Write out  the c-relations for c= 0
z11 + z22 = z21 + z12

z11 + z33 = z31 + z13

z33 + z22 = z23 + z32

z11 + z23 = z13 + z21

z12 + z23 + z31 = z21 + z32 + z13

It’s clear that all of the other relations can be derived from these. If h ≠≠≠≠ 0, then the

situations z11=z1  , z22  =z2  , z33  =z3 and z11=z22=z33 =zγγγγ    ( γγγγ = 1,2,or 3 ) are excluded.On

can therefore write with no loss of generality:
z11 = zγ & z22 = zα ;α ≠ γ .

Therefore,

z12 + z21 = zα + zγ
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CASE I:   

  z12 = zα & z21 = zγ (or,z12 = zγ & z21 = zα )

This is the situation of  formal equality in the first c-relation. If K isn’t a 1-

dimensional algebra, then by the lemma, we can’t have z31 = zγγγγ    , or z32 = zαααα . However,

we also have the c-relation: z11 + z32=z12 + z31 . By substitution we derive

zγγγγ + z32=zαααα    + z31  . Since we know that z32  ≠≠≠≠ zαααα   and  z33331111 ≠≠≠≠ zγγγγ ,  the remaining

possibilities are:

(a)   z32 = zγ
(b)   z32 = zβ

By the symmetries inherent in our construction, if we show that (a)  is

inadmissable and zαααα cannot be an averaging element, then we have also shown that

(b)  is inadmissable, so  that  zγγγγ also cannot be an averaging element. Indeed we have

shown more: no trace entry can be the averaging element. Evidently the initial

assumption that the first c-relation was a formal identity is  wrong, and we must

therefore assume z12  = z21 = zββββ    , which then serves as  the averaging element.  We

therefore examine the consequences of (a) :
If z32 = zγ ,then:
2zγ = zα + z31
∴z31 ≠ zα ,z31 ≠ zγ → z31 = zβ , and

zγ = (zα + zβ ) / 2.

Therefore:
(i)z13 + z31 = z11 + z33 → z13 + zβ = zγ + z33
(ii)z23 + z32 = z22 + z33 → z23 + zγ = zα + z33

The  table of K now looks like this:
y

x z1 z2 z3

z1 zγ zα z?

z2 zγ zα z?

z3 zβ zγ z?
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We now make use of the diagonal relation to give us the remaining right-most column

entries:
z11 + z22 + z33 = zα + zγ + z33 = z12 + z23 + z31 =

zα + zβ + z23 = z21 + z32 + z13 = zα + zγ + z13

∴z13 = z33

zβ + z23 = zγ + z13 = zγ + z33

One cannot allow the possibility z13 = z23 a ; by the Lemma, this gives  a 1-

dimensional algebra. This leaves only two possibilities:
(i)z33 = zβ ;z23 = zγ

(ii)z33 = zγ ;z23 = zα

A1 =

y
x z1 z2 z3

z1 zγ zα zβ
z2 zγ zα zγ
z3 zβ zγ zβ

A2 =

y
x z1 z2 z3

z1 zγ zα zγ
z2 zγ zα zα
z3 zβ zγ zγ

Plugging these into the diagonal relation we find that, in the first instance:
zα + zβ + zγ = 2zγ + zβ → zα = zγ   ,

and in the second :
Trace = zα + zγ + zγ = L = z12 + z23 + z31

= 2zα + zγ → zα = zγ

This is a contradiction, since the three roots must be distinct. We have thus shown that

(i) A 2-dimensional algebra with c=0, h ≠≠≠≠ 0 , must have an averaging element;

(ii) This element cannot be on the trace, and therefore
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(iii) zββββ must be our averaging element = (zαααα+zγγγγ)/2

An examination of the c-relations for c=0, combined with this information, very

quickly shows that there is only one form that such a (2-dimensional) algebra can

have:

K =

y
x z1 z2 z3

z1 zγ zβ zβ
z2 zβ zα zα
z3 zβ zα zα

Q.E.D !!
6. The 2nd Degree  Polynomials of

2-dimensional 3- algebras
 for which c=0,h ≠ 0

By the previous theorem, the table matrices  of all these  algebras  have the

same  format. Combined with different vertical and horizontal borders,  these provide

6 distinct tables, isomorphic in pairs, hence 3 really different algebras:
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A1 =

y
x z1 z2 z3

z1 z1 z2 z2

z2 z2 z3 z3

z3 z2 z3 z3

;A2 =

y
x z1 z2 z3

z1 z1 z3 z3

z2 z3 z2 z2

z3 z3 z2 z2

A3 =

y
x z1 z2 z3

z1 z2 z3 z3

z2 z3 z1 z1

z3 z3 z1 z1

;A4 =

y
x z1 z2 z3

z1 z3 z2 z2

z2 z2 z1 z1

z3 z2 z1 z1

A5 =

y
x z1 z2 z3

z1 z3 z1 z1

z2 z1 z2 z2

z3 z1 z2 z2

;A6 =

y
x z1 z2 z3

z1 z2 z1 z1

z2 z1 z3 z3

z3 z1 z3 z3

The following result is presented without proof, as it can be derived very simply

from the methods developed in this paper and in Part I:

THEOREM XIX :
(a ) : The algebra A1 is represented by the family of surfaces given by
z = f (x, y) =

a(x2 + y2 ) + d(x + y) + (4d2 − 4d − 3) / 8a

with

z1 = (3− 2d) / 4a;z2 = −(1+ 2d) / 4a;z3 = (1− 2d) / 4a

(b) : The algebra A3 is represented by the family of surfaces given by:
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z = f (x, y) =

a(x2 + y2 ) + d(x + y) + (4d2 − 4d − 7) / 8a

with

z1 = −(3 + 2d) / 4a;z2 = (1− 2d) / 4a;z3 = −(1+ 2d) / 4a

(c) : The algebra A5 is represented by the family of surfaces given by:
z = f (x, y) =

a(x2 + y2 ) + d(x + y) + (d2 − d − 2) / 2a

with

z1 = −d / 2a;z2 = (2 − d) / 2a;z3 = −(2 + d) / 2a

Observe that algebras A1, A2, A3 and A4 are specified on the same set of roots

z1 ,z2 , z3 for given a and d.

7. The Universal 4-Algebra for c=0
In each of the above situations, there turns out to be a superfluous root, z4 . In

fact, everyone of  these 3-algebras is embedded as a  sub-algebras of a more general 4-

algebra, whose full table is given as follows:
y

x z z1 z2 z3

z1 zγ zβ zβ zγ
z2 zβ zα zα zβ
z3 zβ zα zα zβ
z4 zγ zβ zβ zγ

zβ = (zα + zγ ) / 2;α ,β ,γ ∈(1,2,3)

A1:z4 = −(3 + 2d) / 4a

A3:z4 = (3− 2d) / 4a

A5:z4 = z1
In the case of A5  , the 4-algebra reduces  to the basic 3-algebra , since z3  = z4   is the

double root of a quadratic equation.
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CASE 2:

c= h = 0

  The primary feature of the degenerate case h=0, is that the outer equations

collapse. The 3 linear equations that replace them limit the traces to a small set. Since

a+b+c=0, we can write down the outer equations as:
z11 = lz1 + q

z22 = lz2 + q

z33 = lz3 + q

If l ≠≠≠≠  0 , then all of the trace elements are distinct. If l =0 then all of the trace

elements are identical. Therefore, when h = 0, one cannot have a trace with entries

drawn from 2  and only 2 members of the set Z3 . This limits the possibilities

effectively to four:

 

I...z11 = z22 = z33 = z1
II..z11 = z1;z22 = z2;z33 = z3

III.z11 = z1;z22 = z3;z33 = z2

IV..z11 = z2;z22 = z3;z33 = z1

It is a simple matter to show that possibility  IV will not work:
z2 = lz1 + q = l(lz3 + q) + q =

l(l(lz2 + q) + q) + q = l3z2 + l2q + lq + q

= l3z2 + q(l3 −1) / (l −1)

∴z2 = q / (1− l) = z1 = z3,or

l3 = 1

Unless  l = 1, the solution  z2 = q / (1− l) = z1 = z3 must be the only

solution, the equations being linear. If l = 1, then we have the requirement that:
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z2 = z1 + q = z3 + 2q = z2 + 3q =

z1 + 4q = z3 + 5q = z2 + 6q =...(!),or

q = 0,and

z2 = z1 = z3

 Possibility  III can be eliminated by the same argument used to show that the

averaging element of an algebra for which c=0 (and the diagonal r elation depends

upon the averaging relation) cannot be on the trace.

What remains are the two exceptional traces, namely

I = ( z1 ,z1 ,z1) and II = (z1, z2, z3)

     Trace I: Invoking the set of c-relations for c=0 , one sees that:

  
z12 + z21 = z13 + z31 = z23 + z32 = 2z1

z12 + z23 + z31 = z21 + z32 + z13 = 3z1

 These equations imply the following alternatives, up to isomorphism:

(1) K is the constant algebra, A1:

zij = z1,∀i, j.

(2) K is the algebra given by

z12 = z2;z21 = z3;z1 = (z2 + z3) / 2

Once again, (2)  admits of only two really distinct possibilities, which we may

call A2 and A3  :
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A2 =

y
x z1 z2 z3

z1 z1 z1 z2

z2 z1 z1 z2

z3 z3 z3 z1

A3 =

y
x z1 z2 z3

z1 z1 z3 z3

z2 z2 z1 z1

z3 z2 z1 z1

Although these two algebras resemble each other, they are not isomorphic. We

can calculate the coefficients of the equations for A2 and A3 from the inner equations.

For A2 we get:
z1 = (z2 + z3) / 2
a(z1

2 − z2
2 ) + d(z1 − z2 ) + z1 = z12 = z1

a(z1
2 − z3

2 ) + d(z1 − z3) + z1 = z13 = z2
∴a(z1 + z2 ) + d = (z1 − z1) / (z1 − z2 ) = 0
a(z1 + z3) + d = (z2 − z1) / (z1 − z3) = 1
∴a = 1 / (z3 − z2 ),d = (z1 + z2 ) / (z2 − z3)
z = f (x, y) =
(x + y − z1 − z2 )(x − y)

z3 − z2
+ z1

For A3 we get:
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z1 = (z2 + z3) / 2

a(z1
2 − z2

2 ) + d(z1 − z2 ) + z1 = z12 = z3

a(z1
2 − z3

2 ) + d(z1 − z3) + z1 = z13 = z3

∴a(z1 + z2 ) + d = (z3 − z1) / (z1 − z2 ) = 1

a(z1 + z3) + d = (z3 − z1) / (z1 − z3) = −1

∴a = 2 / (z2 − z3),d = 1− 2(z1 + z2 ) / (z2 − z3)

= (z2 − z3 − 2z1 − 2z2 ) / (z2 − z3) =

−3(z2 + z3) / (z2 − z3)
Finally we look at Trace II , zii = zi , i = 1,2,3. All 3 roots are fixed points.

Examining the combinatorial possibilities in the manner already described we find

that the only algebra of this sort which is not 1-dimensional, and for which c=h=0, is

given by:

K =

y
x z1 z2 z3

z1 z1 z1 z3

z2 z2 z2 z1

z3 z1 z1 z3

PROOF:  the c-relations give:
z11 + z22 = z1 + z2 = z12 + z21

z11 + z33 = z1 + z3 = z13 + z31

z22 + z33 = z2 + z3 = z23 + z32

z11 + z22 + z33 = z1 + z2 + z3 =

z12 + z23 + z31 = z21 + z32 + z13

Assume first that the equalities are formal, so that no root is required to be an

averaging element. To avoid 1-dimensionality, one must have:

z12 = z1,z21 = z2,z13z3,z31 = z1,  , or its isomorphic equivalent.

Combining this with the diagonal relation we get:

2z1 + z23 = z2 + z3 + z32
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This in turn implies only two possibilities:

(1) z1 is an averaging element = ( z2+z3 )/2

(2) z23 = z3 and z32 = z2

The situation produced by possibility  (2) breaks down since z13 = z23 = z33 = z3 ,

which, for c=0 implies that  the algebra is 1-dimensional,  leading  to the prohibited

equality  z1 = z2  .

The above standard table , (and  its isomorphisms),  therefore describes the

only possible 2-dimensional algebra for which c=h=0, and with trace T = (z1 , z2 , z3 ) .

Its  equation is readily  calculated:

z = f (x, y) = a(x2 − y2 ) + dx + ey + q

(d + e −1)z1 + q = (d + e −1)z2 + q = (d + e −1)z3 + q = 0

∴d + e −1 = q = 0

z1 = a(z1
2 − z2

2 ) + dz1 + (1− d)z2,or

a(z1 + z2 ) + (d −1) = 0

a(z1
2 − z3

2 ) + dz1 + (1− d)z3 = z3,or

a(z1 + z3) + d = 0,and

z1 = (z2 + z3) / 2

∴a(z2 − z3) = 1,a = 1 / (z2 − z3)

d = 1− a(z1 + z2 ) = 1− (z1 + z2 ) / (z2 − z3)

= (z2 − z3 − ((z2 + z3) / 2 + z2 ) / (z2 − z3)

= −(z2 + 3z3) / (z2 − z3)

The structure of this algebra is interesting. It contains two 2nd order

subalgebras, both 1-dimensional, although the full 3-algebra is 2-dimensional
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A1
2 =

y
x z1 z2

z1 z1 z1
z2 z2 z2

A2
2 =

y
x z1 z3

z1 z1 z3

z3 z1 z3

8. Complete  Solutions  for the  Coefficients
a, b, c, e, f, q , in  Terms of the  Roots  z1 , z2 , z3

We are assuming that the 3- algebra K does exist on some 2nd degree surface.

This being the case, there will be no inconsistencies in the c-relations, and the other

coefficients may be computed using simple linear algebra. Let

h= a+b+c ; l = d + e , q = constant term. Then the outer equations become :

(α )hz1
2 + lz1 + q = z11

(β )hz2
2 + lz2 + q = z22

(γ )hz3
2 + lz3 + q = z33

Treating these as a system of linear equations in the unknowns h,l, and q, we

find:
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∆ =

z1
2 z1 1

z2
2 z2 1

z3
2 z3 1

= (z1 − z2 )(z1 − z3)(z2 − z3)

h =

z11 z1 1

z22 z2 1

z33 z3 1

/ ∆

= {z11(z2 − z3)− z22(z1 − z3) + z33(z1 − z2 )} / ∆

l = −

z11 z1
2 1

z22 z2
2 1

z33 z3
2 1

/ ∆

= {z11(z3
2 − z2

2 )− z22(z3
2 − z1

2 ) + z33(z2
2 − z1

2 )} / ∆

q =

z11 z1 z1
2

z22 z2 z2
2

z33 z3 z3
2

/ ∆

= {z11(z2
2z3 − z3

2z2 )− z11(z1
2z3 − z3

2z1) + z11(z1
2z2 − z2

2z1)} / ∆

We may combine this with the inner equations to find a,b,d,e. Write h = h(z),

l=l(z), q=q(z), where h is of degree -1, l of degree 0, and q of degree 1 in the roots  z1

z2  z3  . Forming the differences of the transpose entries, we have:

z12 − z21 = (a − b)(z1
2 − z2

2 ) + (d − e)(z1 − z2 ),or

(a − b)(z1 + z2 ) + (d − e) = (z12 − z21) / (z1 − z2 ) = λ1

(a − b)(z2 + z3) + (d − e) = (z23 − z32 ) / (z2 − z3) = λ2

These can be solved as ordinary linear equations in the unknowns a-b and d-e :
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a − b = (λ1 − λ2 ) / (z1 − z3)

d − e = ((z1 + z2 )λ2 − (z2 + z3)λ1) / (z1 − z3)

Combining this with the expressions

          a+b = h(z) - c

d+e = l(z)

we can write  the complete expressions for the coefficients as:

a = 1 / 2[(λ1 − λ2 ) / (z1 − z3) + h(z)− c]
b = 1 / 2[(λ1 − λ2 ) / (z1 − z3)− h(z) + c]
d = 1 / 2[((z1 + z2 )λ2 − (z2 + z3)λ1) / (z1 − z3) + l(z)]
e = 1 / 2[((z1 + z2 )λ2 − (z2 + z3)λ1) / (z1 − z3)− l(z)]

Finally we discuss  the problem of describing those situations in which the c-

relations are consistent or inconsistent. Having done this, we should then  be able to

look at a 3-algebra K and determine if it can exist on some 2-surface, and also  write

down the coefficients of the equations which contain such algebras in terms of the

roots.

We therefore conclude this paper with an analysis of the c-relations.

Let τ = (z1 − z2 ) / (z2 − z3)

THEOREM:
L = z12 + z23 + z31 = z21 + z32 + z13 =

z33(2 + τ )τ / (1+ τ ) + z22(τ2 −1) / τ − z11(1+ 2τ ) / (τ +1)τ

This equation expresses the diagonal relation as a linear sum of the trace

elements with coefficients in ττττ . To prove this, we write the c-relations in terms of    ττττ  :
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c(z1
2 − z2

2 ) = z11 + z22 − z12 − z21
= ((z1 − z2 )2 / (z1 − z3)2 )(z11 + z33 − z13 − z31) =
((z1 − z2 )2 / (z2 − z3)2 )(z22 + z33 − z23 − z32 ) =
((z1 − z2 ) / (z1 − z3))(z11 + z23 − z13 − z21)
= etc......Since
(z1 − z2 ) / (z1 − z3) = ((z1 − z2 ) / (z2 − z3))((z2 − z3) / (z1 − z3)) =
τ / (1+ τ )
∴z11 + z22 − z12 − z21
= (τ / (1+ τ ))2(z11 + z33 − z13 − z31) =
τ2(z22 + z33 − z23 − z32 ) =
(τ / (1+ τ ))(z11 + z23 − z13 − z21) = etc......

Combining this with the diagonal relation we have:
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z11 + z22 − z12 − z21

= (τ / (1+ τ ))2(z11 + z33 + z12 + z21 + z23 + z32 − 2L) =

τ2(z22 + z33 − z23 − z32 ) =

(τ / (1+ τ ))(z11 + z23 + z32 − L) = etc......Let

u = z12 + z21,

v = z23 + z32.Then:

z11 + z22 − u

= (τ / (1+ τ ))2(z11 + z33 + u + v − 2L) =

τ2(z22 + z33 − v) =

(τ / (1+ τ ))(z11 + v − L)

The elimination  u and v from the above equations gives the desired result. To

complete the proof of the "Culminating Theorem" announced on page 15 , we express

ττττ    in terms of terms αααα =  z1 /z2 , and ββββ =  z3/z2 . This is:

τ = (z1 − z2 ) / (z2 − z3) = (α −1) / (1−β )

τ / (τ +1) = (α −1) / (α −β )

Substituting into the equations used in the proof of the above theorem, ( the

details are left to the reader), we end up with this pair of equations for the solution

of αααα and    ββββ in terms of the table entries:

 

Let: u = z12 + z21;v = z23 + z32;w = z13 + z31.Then
2L = u + v + w Then:
[1]:α(u + z33 − L) +β(v + z11 − L) = z11 + z33 − w
[2]:α(w + z22 − L) +β(u − z11 − z22 ) = L − v − z11

This set of equations will always have acceptable solutions except when:



#100...
α = β;α = 1;β = 1;or∆ = 0,where

∆ = (u + z33 − L)(u − z11 − z22 )− (v + z11 − L)(w + z22 − L)

The restrictions on αααα and ββββ are precisely the  requirement  that the 3 roots be

distinct. Let αααα = 1.  These equations reduce to:

[1]:u + z33 − L) +β(v + z11 − L) = z11 + z33 − w

[2]:w + z22 − L +β(u − z11 − z22 ) = L − v − z11

β(v + z11 − L) = z11 − u − w + L = z11 + v − L

β(u − z11 − z22 ) = 2L − w − v − z11 = u − z11 − z22

These equations are compatible only with either ββββ = 1  or

L = v+z11  , and u=z11+z22. The latter equation is one of the

c-conditions for c=0. The former equation is the same as

z11+ z23  = z13+z21  , which is also equivalent to c=0. Indeed, all of the coefficients of

these two equations ,  on both the left and the right side will be equal to 0 when c=0.

It follows that these equations will be inconsistent only when some of these

coefficients are formally equal to 0 while others are not.

It can easily be shown that the situation ∆∆∆∆ = 0 leads to the same result.

EXAMPLE:

Let  K =

y
x z1 z2 z3

z1 z1 z2 z2

z2 z2 z1 z2

z3 z1 z1 z3

Notice the presence of the subalgebra G = {z1 , z2 } in this table. Substituting for the c-

relations in equations (1) and (2) we find that:
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Equation[1]:

(i)u + z33 − L = z12 + z21 + z33 − z12 − z23 − z31

= z2 + z3 − z2 − z1 = z3 − z1

(ii)v + z11 − L =...= z1 − z2

(ii)z12 + z21 − (z22 + z11) =...= z3 − z2

∴(z3 − z1)α + (z1 − z2 )β = z3 − z2

Dividing through by z2 reduces this equation to:
α(β −α ) + (α −1)β = β −1,or

α 2 − 2αβ + 2β −1 = 0

The second equation is given by:
Equation[1]:

(i)w + z22 − L = z13 + z31 + z22 − z12 − z23 − z31

= z2 + z1 + z1 − 2z2 − z1 = z1 − z2

(ii)u − (z11 + z22 ) =...= 2(z2 − z1)

(ii)L − v − z11 =...= z2 − z1

∴(z1 − z2 )α + 2(z2 − z1)β = z2 − z1

Dividing through by z2 reduces this equation to:

(ii) α = 2β −1

This pair of equations has two solutions, corresponding to two kinds of surfaces that

can hold the algebra K. The first is given by β = 1 / 2,α = 0 . In this algebra z1=0,

and z2=2z3.
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If 2ββββ-1 ≠≠≠≠ 0  , then Equation 1 factors out to an identity, and we are left with the

relation in Equation 2. Substituting in the expressions for a and b in terms of the

roots, this becomes, finally :

 
2z3 − z1 − z2 = 0,or

z3 = (z1 + z2 ) / 2

Roy Lisker
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