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Preface

On the need for a version of Set Theory
specific to the Physical Sciences

In setting up their construction of the integers, Russell and
Whitehead define “0” as the null set, and “1” as the set containing
the null set. This construction is not impervious to criticism, and
we will do so elsewhere in this article. However, whether or not
one accepts their interpretation, clearly that what one might call
“arithmetic ” entities ( “0” and “1”), or philosophical abstractions
( “nothing” versus “something”) have to lay the ground for
Mathematical Set Theory and Arithmetic. The Peano postulates, to
take another example, begin with the “self evident notions” of

“zero” and “successor function”.



However, the axiomatics of Mathematical Set Theory , (which we
will sometimes anagrammatize ( reference: “O Carib Isle”, Hart
Crane, line 5) to MST) is simply inadequate to deal with some very
basic features of the physical universe as reflected in the physical
sciences.

The problems begin with the methods for establishing the
existences of the objects of physics, in combination with purely
conceptual issues.

(1) An element in a set within MST is completely specified by
its definition. Thus, a set containing the numbers 1.1, 2.7 and 8.9
need not delve more deeply into the ontological foundations of
these numbers. There is, of course, some flexibility here: If A is a
set containing a “simple closed curve in the Euclidean plane”, it is

understood that one is free to choose any member of the class C of

all simple closed curves, what may be called a “typical

representative” of _ .

Likewise, if one wants to take the intersection of two sets



A ={6; 2 knots; 3 closed curves}, and B ={6;1 knot; 8 closed curves},
one does not have to worry about the possibility that the
representative knots used in the depiction of A may be different
from those in B, and likewise for the simple closed curves. They
simply must be notated as K1, K2 and/or K3 for the knots, C1,
C2,etc. ... for the closed curves. The intersection E = AnB will
consist of the number 6, one or no “generic” knot; and 3 to no
“generic” closed curves.

However, consider the following: “Let K be a set whose one

element, g, is a glass G, holding a pint of water, W”.

g itself is a kind of set, a compound of G and W, together with a
specific relationship, “containment”. One might notate this as
follows: K ={G,W; p}, p being the relationship “containment” of W
to G.

Now the arguments begin: how many impurities will be
allowed into a pint of liquid before one agrees to accept it as

“generic water”? What, indeed, is “generic water”? Is it a kind of



average chemical compound averaged over all pints filled with

something deemed to be water? Is it a quantity of H20 with less

than 5% of other chemical impurities? Or is one talking about an
abstract idea known as “pure water” which exists nowhere in the
universe but contains molecules holding 2 hydrogen atoms and 1
oxygen atom in an idealized state of bonding? Or should one accept
a glass of pure oxygen and pure hydrogen that were bounded
together in water, then separated by hydrolysis?

In a real scientific paper or lecture, “everyone” will “know
what one is talking about”, when the glass of water is invoked .
However, the existence of the set K is dependent on the legitimacy,
by convention, observation or idealization, of G,W and p . In MST,
the only set allowed with “non-existent” elements, is the null set.

In logical symbolism:

(D)dx — Hx}
(@)-Ix—={x}=0
(@i)danIbA...A-Fz—{a,b,c,.z} =D

“(i)If x exists, then the set containing x exists.



(ii) If x does not exist, then the set containing x is the null set.
(iii) If a,b,c,... all exist, but z does not exist, then the set containing
ab,c,d,...z is the null set.”

Treating aggregates, collections, bounded, contained or coherent
combinations of elements in this way is far too restrictive for the
physical sciences (indeed for any science except mathematics) . In
MST, any debate over the existence of its elements must translate
into a debate over the existence of the set itself. No doubt there are
quibbles about “set constructions” of the form

S ={horse, unicorn}: “The set S contains a (generic) horse and a
(generic) unicorn”. Is S {horse}, or the null set; or must one invoke
some higher level of set theory? We will not go into such quibbles
here.

Briefly, the ontology of physical objects differs sufficiently
from those of mathematics, that a different version of set theory,

with its own lattices and perhaps even its own logic (c.f. the



quantum logics of Birkhoff, von Neumann and Reichenbach ) is
needed for their requirements.

(1) In the natural sciences, the “existence” of any identifiable
object in the universe requires that it be “observable”. On the
theoretical level it may be allowed if it leads to predictions of
things that, once again, can be observed. An undetectable green
dragon in the bedroom that regulates the room temperature is
“effectively non-existent” in physics. Mixtures of visible and
hypothetical objects can be assigned various degrees of “existence”
depending on the theoretical context.

An excellent example is Ludwig Boltzmann’s recognition of the
“usefulness” of postulating the existence of atoms. The atomic
hypothesis was controversial in scientific communities all through
the 19" century. In 1905 Einstein showed how one could use the
atomic hypothesis to calculate the random spread of Brownian

motion. Using Einstein’s equations they were detected indirectly



by Jean Perrin, then seen, much later, by the aid of the electron
microscope.

This raises an interesting question, one that speaks to the
concerns in this article. Boltzmann’s atomic hypothesis was critical
in leading to the developments that led to Einstein’s worl on
Brownian motion, and Perrin’s indirect discovery of the atom.
Question: Are Boltzmann’s “atoms” the same as Perrin’s “atoms ?”
When one makes a statement like, “Let X be a set of 20 atoms”, does
one have in mind Boltzmann’s or Perrin’s atoms? Suppose we
substitute Perrin’s atoms for Boltzmann’s atoms in his derivation of
the H-Theorem: do they obey the Stoss-Zahl-Ansatz? The Ergodic
Hypothesis? The Equipartition “Theorem”?

Otherwise stated, Boltzmann’s atoms are “hypothetical objects”,

Perrin’s were, within the limits of observation (Since improved

greatly) “real physical objects”. The two sets X1= (20 Perrin atoms)

and X2 = (20 Boltzmann atoms) are as ontologically distinct as a

painting by Picasso and Plato’s ideal of the beautiful! They require



a different set theory, a different logic, a different Boolean lattice
structure.

Ludwig Boltzmann was thoroughly justified in arguing that
the atomic hypothesis was the best means available for developing
a Statistical Mechanics to explain the phenomena underlying
Thermodynamics. In doing so he constructed an effective “bridge”
between two established branches of physics, Thermodynamics
and Hamiltonian Mechanics. This bridge connected them correctly
in the sense that it allowed for predictions, and because there was
no better explanation. In a very real sense, then, atoms (molecules,
etc.) exist in Statistical Mechanics, and there is no error in logic in a
statement of the form, “Let H be the collection of atoms of the same
constant energy in the phase space diagram of a specific gas in a
specific container.”

In this context, these atoms are not unicorns, or invisible green

dragons; they are back-reconstructions to entities that are likely to



exist in order to connect the results of a pair of established fields in
a science.

Once again, one can argue about whether these constructions are
idealizations, back reconstructions or “the best theory we have”,
but what is certain is that they are not mathematical ideas, nor the
kinds of “elements” that occur in MST. In fact, the
indistinguishability of such “hypothetical” objects rule out all
possibility of treating them as elements of sets, and demand that
the ‘reality’ of their existence be replaced by a texture of
probability densities, that is to say, pure numbers which, of course,
are amenable to mathematical treatment.

Note in particular that, unlike the situation in mathematics, the
behavior of entities singly or in small numbers (existential
predicate J), may be very different from their behavior in large
numbers, or infinite numbers, or in their totality (universal

predicate V). The “local universe” is quite a bit different from the
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“large scale universe”, and very different from an essentially
conceptual object known as “the universe”!

(2) I'm having a conversation with someone, and I ask him
“Tell me something about your mother.”

That she is nowhere visible, that she may have died, that I may
never see her in my entire life is irrelevant. My conviction of her
existence is as certain as the visible presence of the person I am
talking to. Even the fact that she may have only been a person who
donated her ova, to be placed in another woman’s womb to become
the embryo that would eventually turn into the person I'm
speaking to, is irrelevant. He had to have a mother. The only
purpose in pointing this out is to note that the concept of
“observation” can be extended beyond things that are immediately
visible. Anything “observable” effectively exists in physics.

More complex issues are involved in treating phenomena that
one may, in some sense, prove to exist, yet which are formally

“unknowable” by virtue of the theory itself. This might have been



considered impossible in the 19t century, but the 20t century has
seen many examples of them.

Most of the examples, of course, come from the Relativities
and Quantum Theory. Perhaps the simplest is this situation
described by Special Relativity: if a light beam is sent into outer
space, strikes an object whose velocity relative to the earth is
unknown, and is bounced back, it is impossible from this alone to
know where the object is, or at what time the collision took place.
The reasons for this have to do with the length and time
contractions of moving objects. All that one can say is that the
beam did strike something at a time which (either in the reference
frame of the object or of the earth), which did “exist”.

In general, given any signal sent by radiation from the earth
into outer space, it is impossible to know anything about its
trajectory unless some independent source of information relays
this back to us. In particular, if such a ray never strikes another

object, it is lost to us forever.



The interior dynamics of a Black Hole is another phenomenon
predicted by General Relativity about which, in theory, we can
know nothing- at least if we accept the Hawking/Penrose scenario
of the “trapped surface”.

The largest number of theoretically unknowable phenomena
come from the Quantum Theory:
(1) The path of the electron.
(2) The vital status of the Schrodinger Cat
(3) Events occurring at a scale below the Planck length
(4) The distinguishing characteristics of the particles in a Bose-
Einstein condensate
(5) The distinguishing characteristics of the “two”(?) particles in
an entangled singlet.
Can standard MST deal with “elements” defined and
described in this way? Note that, even though one cannot
“distinguish” the electrons in a electron gas, it can be weighted,

and in theory, one can know how many electrons it holds. Yet



they cannot be distinguished. Therefore the statement “Let B be
the set of all particles in a Bose-Einstein condensate” would
appear to make little sense.
AR AR AR AR AR AR AR AR AR
In summary, the elements of a set in MST must meet a list of
requirements that one simply cannot expect to find for many of

the entities of modern physics:

(1)Their “existence” must be not ambiguous, nor subject to
debate, nor provisional. In the natural sciences, on the other hand,
one must allow even the possibility of the existence of unicorns, if
these give the best explanation for observed data

(2) The “existence” of the elements of a mathematical set does
not derive from observation, or from apparatuses or instruments
used in the making of such observations

(3) The potentially infinitely ascending tower of primary
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attributes supporting secondary supporting tertiary supporting n-
level attributes, can have no place in the description of the
elements of mathematical set theory

(4) Above all, the elements of a mathematical set must be
distinguishable. This does not prevail for a great many of the

entities in modern physical theory.
Containers

Any dispute about the “existence” of the elements of a
mathematical set inevitably implies a dispute about the “existence”
of the set itself. The notion propounded here of a container is
designed to circumvent this: A container captures the idea of a
collective aggregate, like a set; however the existence of the
containing entity does not depend on the existence of its
individual elements. This must be understood as a first attempt
only towards untangling the “ontological nightmare” that plagues

so modern physics, and , perhaps, will always be with us.



I. The Ontological dilemmas of the Set Concept

The principal logical failing in the set concept,

(as elaborated for example by the Zermelo-Fraenkel or axioms), is
that the existence of a set, S, is dependent on the existences of its
elements. These elements are assumed, by various arguments
having nothing to do with their assemblage as a set, and at least as
a hypothesis (in which case we are talking about hypothetical sets)
to have prior existence.
It is also assumed that these prior existents have distinguished
existence. Each one is distinct and different from the other.

Given distinguished elements e ,f ,g,... etc. , the assertion of

their “existence” may be notated as (Ele A Hf A3 g From this one

makes use of the

Set Postulate: (i)de — I{e}

“The existence of e implies the existence of the set containing e.”
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If S is a well-founded set, and e an entity whose existence has
been asserted by various means, then the union set S’ comprising
the contents of S with the addition of e is guaranteed by ZF.

Note that:

(1) Sets must have elements. We will examine the special status
of the null set in a moment.

(2) These elements must be distinguishable.

There are several ways of looking at the vacuous set that
bring it into conformity to these statements. We assume, as is often

done in MST, that there is a “universe” of elements U, from which

all well-founded sets derive their existence. The “existence” of all
the elements in U implies by the Set Postulate, the existence of

W= {U}, the set containing U. This once again, has only a dependent
existence on the existence of its elements. The “vacuous set” ¢ can
then be defined as the complement of W. If some or all of the

elements of U do not exist, then the “vacuous set relative to the
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universe U” also does not exist. This sidesteps the problem of
whether the set of all unicorns is the same, or different from the
vacuous set. In the way that we use the concept of a container, we
will argue that it makes more sense to speak of the “vacuous
container”, than of the “vacuous set”

At any rate, if S is any set, then the addition of a new
element, f, to the content of S destroys the “existence” of S. It is
playing a bit of sophistry to argue that if an element could be
removed from the vacuous set it would cease to exist, but because
this can’t be done, it must exist!

In our view it is a serious error in logic to deduce, from the fact
that the null set has no content, that it somehow exists apart from
its content (which doesn’t exist)! In the same way, it is our content
that the construction by Russell and Whitehead of the integers
should not begin with 1={¢}, that is “1 is the set that contains the set

that contains nothing, but rather a postulate to the effect that
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“since something quantifiable (whether in the universe or thought)
exists, we will call a standard quantity of that something “1”.

This is consonant with the way the “unit” normally works in the
world of magnitudes: one selects a certain weight, the ounce for
example, and designates as “1” the weight of a mass that weighs
one ounce. This operation is not possible if one wishes to go from
the null set to the “unit set”

In summary: since the existences of all sets except the “null
set” are dependent on their contents, we do not see why any

exception should be made for the null set.

I1. The need for an axiomatics of “Containers”

The above discussion might be dismissed as academic
quibbling over the fine points of definitions in logic. Our focus in
this preliminary article however, is on the ontological nightmares

of modern physics , a state of confusion between observation and
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logic, between science and philosophy, that is unprecedented in
scientific history.

In modern physics one finds many concepts which possess
the attributes of “containment” which find no equivalent in
classical set theory (nor, for that matter, in traditional geometries.)
The degree to which a “container” and its “content” can or cannot
be separated differs from one branch of physics to the next.

Examples proliferate: the presence or absence of a space-time
background issue in General Relativity; the phenomenon of
quantum tunneling ; the locality paradoxes of Quantum Optics; the
slipperiness of the entropy concept, particularly for systems out of
equilibrium; the ubiquitous dark matter; dark energy; etc.

The first requirement for our definition of a container will be
that it somehow exist (in some reasonable use of the concept),
independently of its contents. Let’s (provisionally) notate
“containment” by the symbol [( )],. The index “a.” specifies which

container is under consideration. This already highlights the fact
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that it exists apart from its contents. (Unless necessary, we won't
notate the index.) Then its ontological attributes must include :

"y
X

(1) The existence of does not imply that x is (or even can be)
the contents of a container: —-(El{x} — 3[()6)])
(2) Containers should possess what may be called a “vacuous

state”:in some sense they “exist” independently of any contents

(whose ‘existence” is justified by other protocols, observation,
logic, definition, etc: A([()] )~ — Jx such that([(x)],,)

One can loosen up this requirement for entities that may be
considered midway between containers and sets: they must contain
something taken from a list of potential contents.

(3) The potential contents of a container K may be called its
“states”, o . If L is the list of states, then the full description of a
container may be notated K =(Ko; L; o) Here Ko refers to the
“vacuous state” , if it applies: wine bottles can exist without wine.

(4) The existence of a container is contingent, neither on the

existence of the container, nor of a specific state of that container .
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In this preliminary paper we will be looking at 3 classic
examples of containers:
(1) Boundaries; Fields; Potential Wells
(2) Continua

(3) Observables

III. Boundaries : Venn Diagrams and the

Jordan Curve Theorem
Let L be a simple closed curve in the Euclidean Plane. By

the Jordan Curve Theorem, L separates the plane into (1) an
“inside” (2) an “outside” (3) L itself .

If “L” is lifted isometrically into 3-space it loses its
capacity for “containment”. Thus L is a boundary, a certain kind
of container, not a set. Indeed, if one designates the copy of L in
space as L’, and projects L’ onto L in the plane, we see that L’ exists

apart from any properties it might have of containment, and that



these properties only become manifest when projected onto a plane
surface.

At the same time, the “set” consisting all locations on the
places “inside” L disappears by removing a single point inside L!

Venn diagrams are most effective as tools in MST if they
are thought of as convex regions, or even as a collection of
disconnected convex regions : One starts with two finite set of
points, or locations Q ={q1,qz,....qn}, P={p1, p2,... pn}
(easily generalized to infinitely many) , in the plane. One then
draws a boundary A, that encloses an entire region containing P,
yet leaves the set “Q” on the outside. A is a “boundary”; there is no
notion that the sets P and Q somehow “create the inside “I” of A, or
its complement J =IC.
As long as we stick to these conventions, we can bring in

the full Boolean lattice of Set Theory and speak of “unions”,

“intersections” , “complements” and so on.

IV.The Axiom of Choice
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In some sense, the Axiom of Choice is implicit in MST
by virtue of the 2 ontological requirements of a set:
(1) The existence of a set S is dependent on the existence
of its elements
(2) All of the elements of S are distinguished .

Because of these requirements, one can in theory select out any
element by virtue of its being unlike any other element of S. This
leads, (intuitively if not strictly logically) to the procedure known
as “counting”, and, with a few more convenient assumptions, the
Well-Ordering Theorem.

At the same time we know of “countable sets” that cannot be
counted. For example, the set K of all computable numbers on the
real line. Arguments equivalent to the constructions in Gédel’s
Theorem show that K is indeed “countable”, yet, using a simple
Cantor diagonalization, there is no algorithm that can be
constructed to do the “counting” (something which is not true for

the rationals for example). Unambiguous counting thus serves as a
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kind of touchstone, a line of demarcation between the set concept,
and other ways of designating a collectivity.

To our way of thinking the Axiom of Choice, particularly with
respects to the objects and concepts of the physical science, should
be allowed to vary as a function of the specific context. Phenomena
such as entanglement, non-locality, Black Holes, even turbulence
and statistical mechanics, do not comfortably admit the notion that
it is desirable, or even possible, to select out individuals from
aggregates of entities, whether they be particles, fields, continua,
uncertain locations, etc.

In Statistical Mechanics, for example, one is confronted by
situations that one can characterize as partial indistinguishability.
The phase space of a dynamical system is decomposed into tiny
boxes, so small in fact that one cannot say how many particles are
in them, only that the box is empty or full. Each box holding one or
more particles is given the weight “1”; the empty boxes have

weight “0”. By thus relaxing of the notion of “choice” one is able
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to define a “fictive density”, very unlike the Liouville density
which is an invariant constant, from which one derives
Boltzmann’s equivalence of entropy with the logarithm of this

‘semi-mathematical’ phase space volume.
The Axiomatics of Container Theory

Our conception of a “Container” therefore begins with these
exceptions to the classical Zermelo-Fraenkel axioms of Set Theory:
(1) The existence of a container is not dependent on its content.
(2) The elements of the content of a container need not be
distinct. This will become clearer when we discuss continua,
observables, potentials, fields, frames and spaces.
(3) The Axiom of Choice may be weakened, or dispensed with
altogether
(4) A container may contain itself. Here I am motivated primarily
by ideas from Aesthetics. It is often the case that, in works of art,
notably music, that the form can be treated as an element of the

content.
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Reviewing each of these conditions in turn:

(1) The assertion O = {al,...an} — El[(()')]
is not an essential property of a container: the state ¢ , consisting of
a set of numbers aj,...an, (for example) must be established
independently from the existence of the container [()] .

(2) Let L be the “list” of “states” (o), that is to say, “permissible

contents” of a given container J . Then

(a) L may simply be an inventory of sets, a kind of databank

(b) A container, J,can be defined autonomously, setting up
the list of potential states L by implication. More fundamental
than this is the property:

(c) Containers can have “open” lists, for which there may not
exist a complete inventory of permissible contents. One example of
such is the container word “Space”.

(d)One of the things that the container concept may be able to
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address is the dubious status of statements in standard set theory of
the form: “Let H be the set of all the birds in Pennsylvania on the
morning of June 10,1976” . The problem with this seemingly
innocuous definition is the following;:

The existence of the set H is dependent on the existence of its
elements. However, there is no way of knowing if any method of
detection can give a definite number to all the birds in
Pennsylvania on that date. One can always argue that some birds
went undetected. The statement is very different from “Let H be
the set of all birds observed (by some method) on a certain date”.

In other words, an ontologically dependent concept, the
“setness” of H, relies on an entity “ALL birds” that is intrinsically
unknowable.

The idea of an “open container” allows for such things:
Pennsylvania is a region on earth in which there are birds. We
know that it always contains at least one bird, and probably others.

Thus the “set” of all birds there on a certain date, is contained in the



boundary container “Pennsylvania” , which does not depend for its
existence on the existence of birds. One can state this as a
tautology:

The container “Pennsylvania ( at a certain date) contains all the
birds contained in Pennsylvania”!

Since the existence of Pennsylvania does not depend on its
birds (unless one is an ecologist!) , one avoids the usual quibbles
about sets.

Note how the phenomenology of “observation”, the most
controversial issue in modern physics, is the issue in setting up this
paradox in Set Theory, which may be (partially resolved) by the

introduction of containers.
V. Continua.
(1) Before the work of Dedekind and Cantor, it was
not customary to think of a continuum as something that could be
decomposed into distinct locations. Granting that the real line, as

analysed by mathematicians of the 19t century, is the prime
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example of a decomposable continuum, decomposability is not a
prima fascia property of a continuum. It has not been customary in
the history of science to assume that, for example, liquids , gases
and solids were decomposable as a gigantic, potentially infinite
number of point-objects.

Democritus, and the Epicurian school as exemplified most
brilliantly by Lucretius, argued that the visible objects in the world
of daily appearances could be reduced to collections of atoms.
However, following Lucretius, they assumed that the atoms
themselves were hard spheres, sometimes with “hooks” and with a
tendency to “swerve” in their downward paths, yet in themselves
indivisible.

When Ludwig Boltzmann attempted to lay the foundations of
Statistical Mechanics by the depiction of gases as aggregates of
atoms or molecules, he did not maintain that these existed in the

real world. In fact, Boltzmann constantly changed his pictures of
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sub-microscopic reality to fit his mathematics, depicting these
elementary particles as
(1) hard spheres
(2) point particles
(3) indivisible continua; or probability distributions.
For us, the defining condition of a continuum is in the connectedness

of all of its parts; note that we do not use the term “elements”.

Watching the flow of a river, the lava from a volcano; listening
to an extended sound in a musical composition; even when
thinking of the flow of time, it is not customary to try to dissect
these experiences into point locations. Even in the customary
notion of the “instant”, there is a tripartite division of emerging
from the past, verifying the experience of the present (which takes
time), moving into the future. What is considered to characterize a
continuum is:

(1) A continuum has parts

(2) These “parts” are themselves sub-continua
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(3) One can speak of closer and more distant parts relative to a
given part.

(4) There is no discernible “line of demarcation” between a part
and its neighbors. This condition can be loosened as required.

(5) It is possible to “travel” from one “part” of a continuum to
any other by a connected route involving neighboring parts.

The real line R, is a continuum in this sense. That it is
decomposable is an added benefit. An open covering of a segment
on the real line is a continuum if the ‘indiscernible boundary”
condition is loosened.

One can add a few more conditions, corresponding to the
common notions of the composition of a “fluid”

(6) In keeping with the notion of “substance” whether solid,
liquid or gas, one must in fact abolish the possibility of any sort of
reduction to fixed point particles or locations. Any form of
substance must occupy a positive volume; “Euclidean points “ may

exist in mathematics, but they are foreign to the whole spirit of



physics, and we are looking for concepts that are relevant to
physics. For example, the density of a particle reduced to a point, is
0/0! A “zero amount of substance” is not conventionally considered
to be substantial.
(7) One of the consequences of (6) is that the complement of a

part is also a continuum. To express this requires two notions

a. If Pis a “part” of a continuum C, there exists a “part” Q
which is disjoint from P: P NQ is vacuous

b. Let R be the union of all the parts of C disjoint from P.

Then this is either a continuum or a union of continua.

VI Observables

In the context of this article, an “observable” is a
conceptualized entity, either a mathematical construct or some
entity abstracted from physical observation and theory.

(i) It has no distinguishable locations, elements, points or parts

(ii) One knows all that is possible to know about it through
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the measurements of characteristic magnitudes or quantities. These
measurements can be made, abstractly or with physical
instruments, producing a list of numbers (real, complex, elements

7 u

in some Lie algebra, etc.) that constitute its” “state”, o .
(iii) The list of all possible states constitute the potential or
capacity of the observable as container.

Examples of such mensurable quantities are of course, weight,

energy, space-time location, spin, volume, density, number, etc.

Time, the Paradigm of Observables

Consider the manner in which a state of the observable
“time” is measured by a clock. A clock is a dynamic system in a
space-time region of “acceptable isolation” ( John Hamilton,
inventor of the chronometer, devoted his entire life to creating

such “conditions of acceptable isolation”.). Its” defining property

is that it exactly reproduces at some future time t1 = to +r ,

(within a controlled margin of error), an initial state X at time to.
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m is its period. Under the assumption of strict causality, this
initial state will be reproduced, at exact intervals =, indefinitely,
(or, more realistically, until one of its moving parts runs down.)

What does one mean by “the initial state of a clock”? Itis a
state of a very great number, potentially infinite list of numbers
describing all its moving parts, (with generic representative p),
through its list of time derivative derivatives, dp/dt, dp%d?t,
dp¥/dst .....

This list is the Observable for the clock; the Observable for
the magnitude “time”, is just the period =, and the initial time,
which can be taken to be “0”. Just as in quantum theory, the
state of the measuring apparatus must be included in the state
description, as well as the magnitude being measured.

The State itself is just a collection of numbers and can
therefore be treated as a set. The Observable itself cannot be
comfortably described as a set, but fits well within the concept

of a container.
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Summary

A dispute over the existence of the elements of any set
translates into an ontological dispute about the existence of the
set itself. In physics in particular, the many disputes about the
“existence” of just about everything questions the legitimacy of
any set comprised of these objects.

Furthermore there is a large list of phenomena in physics
which possess only a contingent existence, based on a causal
chain that, hopefully, leads back to some fundamental entity
that does not owe its “hypothesized existence” to anything else.
Or, at least, there is a general consensus that the indefinite
descent can be terminated at that point.

It is because of this, that physics (and the natural sciences in
general) is in need of alternatives to Mathematical Set Theory
(thus, to Mathematical Logic as well, its close cousin). “Physical

sets” , existing apart from their content, may be the way to allow
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for the legitimate treatment of collections of elements whose

ontological status are disputed, either singly or in the aggregate.
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