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Let us entertain the possibility that the physical universe we
see around us can be modeled by the 3-dimensional surface of a
cone in 4 dimensions. For the moment one can assume that this
universe is devoid of relativistic phenomenon, but that the self-
gravity along self-intersecting  geodesics which has been described
in the previous sections may occur. How would this be interpreted
by an observer at rest, say on the planet Earth?

 It has not yet been established that geodesics on the 3-D

surface of a cone in R4 will in fact α1 =
k1
D2 be self-intersecting,

however if they are there will be an effective acceleration of all
objects, galaxies for example,  in the universe towards the vertex at
some distant location. Since, as we have seen, this acceleration is
inversely proportional to the square of the distance from the
vertex, each galaxy will appear to be accelerating from every other
galaxy. Let us suppose that the distance to the vertex, D, is
enormous, and that the distance between two galaxies is some
number of light years, a. Then, suppose that the attraction of

Galaxy I to the vertex is  α1 =
k1
D2 , and that the attraction of

Galaxy II is given by α2 =
k2

(D+ a)2 . Then the acceleration of
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Galaxy II with respect to Galaxy I is

α =
k1
(D)2

−
k2

(D + a)2

=
D2(k1 − k2 ) + 2k1Da + k1a2

(D)2 (D + a)2

If k1 and k2 are very close, the leftmost term can be neglected,
and if a is very small compared to D, we can neglect the right most
term. This leaves the middle term, that is to say:

α ≈
2k1Da

(D)2 (D + a)2
≈
2k1a
D3

The requirements now become very special, but by juggling k1,
k2 , a and D, one can argue that the acceleration is linear in a.

Also, by modifying the attractive force in some fashion, one could
possibly model the Hubble Field by the self-attraction of galaxies
on a 3-D conical surface under ordinary Newtonian gravitation.
It's something worth looking into, and it may give some insight
into the nature of dark matter and dark energy.

We are working in R4 with coordinates (x,y,z,w) . In analogy
with the 3-dimensional case, the equation of a cone is given by

E:w2 = k 2(x2 + y2 + z2 )
(1) What do geodesics  on this surface, other than the

generator lines,  look like?
(2) Are they similar?
(3) Are they self-intersecting?
(4) How does one compute the self-gravity?
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(5) Can one, in analogy to the 3-dimension case, "unfold" the
surface, flattening it out and studying the local structure as a
portion of 3-dimensional Euclidean space?

Some of these questions can be answered immediately. Any
smooth ruled surface (one formed from a sub-pencil of lines
emanating from the origin), has a locally Euclidean  structure
because the curvature is 0 at every point.

Even as a straight line in 3-space can be described as the
intersection of non-parallel planes, so geodesics on the 3D cone
surface, (which we now designate as K3 ) , can be described as the
intersection of surfaces which, relative to the cone, are locally
Euclidean planes.

The obvious way of describing the  "unfolding" or
"flattening" of K3 , is to express the intrinsic metric on K3 in terms
of both its intrinsic spherical coordinates and in terms of 4-D
spherical coordinates in R4, then setting them equal to each other.

4-Dimensional Spherical Coordinates
These combine the radius vector, r, from the origin, with the

direction cosines  α, β, γ   of Cartesian coordinates x,y and z. It is
convenient when working with the cone to put these into the
following form:

w = r cosα
x = rsinα cosβ
y = rsinα sin β cos γ
z = rsin α sin β sin γ

As the generator lines of K3 are the radius vectors from the origin,
its equation in terms of these coordinates is simply:
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α = tan −1(k) = const. !

In computing the metric on K3 in terms of these coordinates,
the fact that dα = 0 will be very useful.

dw = dr cosα
dx = drsinα cosβ − rsinα sin βdβ
dy = drsinα sinβ cosγ + rsinα cosβ cosγdβ
−rsinα sinβ sin γdγ
dz = drsin α sin β sin γ + r sinα cosβ sin γdβ
−rsinα sinβ cosγdγ

The square of the metric is
(dρ)2 = (dx)2 + (dy)2 + (dz)2 + (dw)2

In making the substitutions and calculations, one can quickly
convince oneself that all of the "cross-terms", those in dαdβ or
drdβ  for example, cancel out , and one is left with:
(dρ)2 = (dx)2 + (dy)2 + (dz)2 + (dw)2
= dr2{cos2 α + sin2α cos2 β + sin2α sin2 β cos2γ
+ sin2 α sin2 β sin2 γ}
+r2{sin2α sin2 β + sin2 α cos2 β cos2γ + sin2α sin2 β sin2 γ}
...= dr2 + r 2 sin2α[dβ 2 + sin2 βdγ 2 ]

This is the metric on K3 in terms of extrinsic spherical
coordinates. Since α is constant, sinα is also constant, and in fact

sinα =
1
1+ k2

= const.≡ h . The metric assumes the simple

form:
(dρ)2 = dr2 + r 2h2[dβ 2 + sin2 βdγ 2 ]

The metric in terms of intrinsic spherical coordinates is
simply that of Euclidean 3-space. Let the Cartesian coordinates in
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K3 be designated p,q,s, the spherical coordinates by l , ψ , θ   .
Then,

p = lcosψ
q = lsinψ cosθ
s = lsinψ sin θ
(dρ)2 = (dp)2 + (dq)2 + (ds)2
= (dlcosψ − lsin ψdψ )2 +
(dlsin ψ cosθ + lcoscosθdψ − lsin ψ sin θdθ )2
+(dlsin ψ sin θ + l cosψ sin θdψ + lsin ψ cosθdθ )2
...= dl2 + l2[dψ 2 + sin2 ψdθ 2 ]

     By equating these two forms of the metric we can examine the
unfolded or flattened hyper-surface of K3, actually its projection,
in terms of the coordinates r,α,β, γ  . This representation is
analogous in every way to the treatment presented in the previous
section of geodesic structure on the surface of a cone in 3-space.
The projection preserves intersections, which is what we are
looking for. Equating the two forms of the metric:

dl2 + l2 [dψ 2 + sin2 ψdθ 2 ] = (dρ)2 = dr2 + r2h2[dβ 2 + sin2 βdγ 2 ]
By equating corresponding coordinates ( this is equivalent to

projection) one obtains:

(1)dl2 = dr2;or l = r
(2)r2h2dβ 2 = l 2dψ 2 ;or hβ = ψ
(3)h2 sin2 βdγ 2 = sin2 ψdθ 2 = sin2 (hβ )dθ 2 ;
or dθ = hsin β

sin(hβ )
dγ
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Clearly there are difficulties involved in the relationship
between θ and γ . In order to solve this equation, one considers
some equation on the hyper-surface K3  of the form f (l, θ, ψ ) = 0 .
Solving this allows one to substitute an expression in l and ψ into
equation (3), which can be translated into a differential equation
in the coordinates r,β and γ . Intersection with a second curve
g(l, θ, γ) enables one to eliminate l and express θ entirely in terms
of γ .

Even in the case of a linear relationship between the
coordinates p,q and s, ( that of a plane in the conic hyper-surface),
this procedure is extremely cumbersome. However it is not
difficult to show, informally, that all geodesics on K3 which are
not generator lines, are similar. By choosing a geodesic whose
equation is of a particularly simple form, we will then understand
the intersection structure of all geodesics.

To show why all geodesics are similar, observe that the
equation for K3 is homogeneous in w, x, y and z . By its very
structure, it is also rotationally  invariant in the coordinates γ and β
, while a is constant . Furthermore it is locally Euclidean at each
point. This means that the cone "looks the same", at all points, i.e.,
it is self-similar.

Now let P be a plane in the hyper-surface of K3 . One can
drop a perpendicular line L  from the vertex to P. It is not difficult
to see that the structure P and L combined, can be rotated, then
reduced or expanded by a  similarity transformation  to any other
combination P' plus L' .
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If G is any geodesic line on K3 , (not a generator), one can
likewise drop a perpendicular L  from the vertex O onto G, then
pass a plane P through G which is perpendicular to L.

This structure (P,L,G), will then be similar to all other
structures (P',L', G') on K3 . Hence all geodesics are similar.

The argument is not rigorous, although it closely follows
similar arguments which show that all non-generator geodesics on
the surface of a cone in 3-space are similar.

Making the reasonable assumption that the above statement
has been proven, we select our particular geodesic as the
intersection of two planes in K3 :

(1) q = const. = c1 = lsinψcosθ  ;
(2) s = const. = c2 = lsinψsinθ

Dividing (2) by (1) gives the relation tanθ =  c1 /c2   =  c3 .

In other words, keeping θ constant defines a plane on K3  ,
which is clear anyway from the definition of spherical coordinates.
But then θ is constant , then dθ  = 0 , which means that dγ = 0, and
γ can also be  considered an arbitrary constant. This eliminates the
difficulties of dealing with equation (3), and the equation of our
"generic" geodesic in the projection of the conic surface into a
hyper-plane of  R4 is

lsinψ =
c2
sin θ

=
c2

1+ (c2 c1)2
=

c1c2
(c1 )2 + (c2 )2

= m , 

where m functions as a kind of slope. Translating this into
extrinsic coordinates gives the equation we are looking for:

rsin(hβ ) = m
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In particular, let us suppose that h has the value 1/4 . In the
situation in 3-space this is associated with a vertex angle on the
flattened surface of  π/2 . The equation is exactly the same as the
one obtained by the projection of the conic surface K2 onto the x-
y plane, and describes a curve with a single self-intersection.
Indeed at a point of self-intersection, one requires, in polar
coordinates, that

 

sin(β 4 ) = sin(
β + 2π

4 ) = sin(
β
4 +

π
2)

= cos(β 4 )
∴β 4 =

π
4,β = π

There is thus a self-intersection at the angle π .
Having reduced the 4-dimensional case to the behavior of

geodesics on planes determined by  g = const., the physical
situation, in terms of Newtonian self-attraction is identical too that
of the 2-cone surface in 3-space.
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