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Preface
This treatise exhibits certain important relationships that

exist between 3- and 4-note chords sharing  several intervals in
common. When present in a composition, these common intervals
are perceived as an "association" between those sonorities.

The structures that are elucidated   are so fundamental to
compositional technique, that it isn't necessary to give examples of
compositions illustrating their use.  It is important to emphasize
that this is not a theory of musical composition . either diatonic,
serial or 12-tone. Its relationship to musical composition may be
considered analogous to that of a treatise on the phonemes of
English to the writing of poetry.

Still, I  believe that the analysis presented here, which
generalizes techniques of suspension, anticipation, resolution,
constructing cadences, etc., traditional to diatonic music, will be
immediately perceived by composers as useful for their work.
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The only prerequisites are the ability to read music, a general
familiarity with the compositional techniques of European music,
and some knowledge of simple abstract algebra, such as groups
and modular arithmetic, in particular to the base 12.

❆❆❆❆❆❆❆❆❆❆❆❆
❆❆❆❆❆❆❆❆❆❆❆❆
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I. All-Interval Chords, Transpositions and
Group Theory

An "All-Interval Chord" is one whose relative interval
content includes all the intervals between the 12 notes of the
chromatic scale. For certain tetrachords each interval occurs once
and only once; obviously the tritone, though appearing twice,
must be deemed equivalent to its inversion. For the purposes of
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this treatise the phrase "all-interval chords" will mean these and no
others.  There are 4 distinct all-interval tetrachord sonorities:

Figure 1
A  useful structural property of these sonorities  : since every

interval is present in the interval content once and only once,
every transposition of a specific All-Interval Chord  ( save at the
tritone ), will have one and only one note   in common  with the
original chord. The tritone transposition preserves the two notes
of the tritone in the chord:

Figure 2
 The unique note held in common between the original and
the transposed chord may be called the intersection note  of the
two chords .
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There are no other  A.I. tetrachords; this will be
demonstrated in the final section. Label each note by the number
of semitones from C = 0 . In closed position, the chords are:

I = ( 0,4,6,7)
I* = ( 0,1,3,7) . This is the inversion   of I .
T  = ( 0,2,5,6 ) This is the "circle of 5ths  " translation of

I.
Multiply each number in the set (0,4,6,7) by 7 and take the residue
(mod 12)

T* = (0,1,4,6) . This is both the inversion of T  , and the
"circle of fifths" transformation of I* .

Mathematically, the All-Interval chords combine the maximal
"antigroups" (such as (4,6,7), with the identity (0), in the additive
modular group Z12 .

Letting:
Q represent the action of  inversion,
F the circle-of-fifths transformation
QF the result of applying both
 e the identity

these transformations form a simple group of 4 elements  acting on
the set of All-Interval Chords.

Q2 = F2 = e
QF = FQ
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Figure 3
A few observations :

(a) The A.I.  chords contain no "symmetric triads",(
such as  the augmented chord or the diminished or whole step
chord, or any sub-chord with two identical intervals in its
content.)

(b) The sonorities represented by the chords:
E = (0,4,5) and E* =  (0,1,5) are not sub-chords of any of the

all-interval chords. The combinatorial basis for this will be
examined later.

(c) Every other 3-note sonority may be found as
subchords in  one or another of the all-interval chords. There are
twelve of them all told:
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Figure 4
 One sees how  the All Interval chords can be employed to

unify the contrapuntal texture of music employing some or all of
the distinct 3-note sonorities derivable from the chromatic scale.
Observe that 8 of the 12 sonorities in the above chart are present
in only one of the 4 A.L. chords, and the remaining four present
in only two. The trichord sonorities can therefore be employed as
"signals" indicating the presence of a full tetrachord, in the same
way that the intervals of the 7th or tritone signal the presence of a
dominant seventh chord, or even of an entire key. For example, as
seen in Figure 4 , the major triad is uniquely associated with I, the
minor triad  with I*, etc.

❆❆❆❆❆❆❆❆❆❆❆❆
❆❆❆❆❆❆❆❆❆❆❆❆
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Fundamentals of Triadic Associative
Harmony

Definition:   Two  triads, or 3-tone sonorities, are associated   
or  related by association  if  two distinct ( non-inverted ) intervals
in their interval content are shared. Since the interval content of a
trichord consists of 3 intervals less than or equal to the tritone, this
means that associated chords differ by at most one interval ( less
than or equal to the tritone) . In Figure 5 we see  all the triads
associated with the C-major chord:

Figure 5
Although these chords are associated with (CEG ) = (0,4,7 ),

they are not necessarily associated with each other.  Musical
association  is not algebraically  associative   ! It is commutative
however , and certainly reflexive ( A chord is obviously associated
to itself) . Because of the lack  of associativity , "association"  is not
an equivalence relation, a good thing from the viewpoint of
musical composition as it makes possible the construction of
chains of associated chords moving through the entire catalogue of
trichords.
( With one exception: the trichord of the augmented third  , with a
single  interval in its interval content!   )

Obviously the major-minor association is an equivalence
relation, since major and minor forms of a given sonority always
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have exactly the same interval content. Counting the "symmetric"
chords ( excluding the chord of the augmented third)  the total
number of distinct trichord sonorities is 18 .  A progression going
through all of them by the principle of association might begin
like this:

Figure 6
❆❆❆❆❆❆❆❆❆❆❆❆

Starting with  a sequence  of simple intervals ( say minor
third and fifth), one can construct groups of chords associated
with them:

Figure 7
When this pair of dyads appears consecutively, or essentially

in sequence, our habits of listening to diatonic music have
induced the habit in us of interpreting both dyads as sub-intervals
of the same sonority, in this case the major or minor triad,
depending on context.
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So that, if we hear minor and major thirds, an interval of a 4th or
5th, etc., we will automatically place them in major or minor
diatonic triads depending on the key or the modulation between
keys, and so on. Hearing seconds, sevenths and tritones, our
musical imaginations conjure up seventh chords.

Using these two dyads as a base one  can derive  4
associated chords which incorporate both of them and  underlies
the passage from dyad 1 to dyad 2  as a sonority preserving
progression.

In the charts below this is worked out in detail for the
example of  Figure 7. The incorporation of the derived trichord
sonorities into the all interval chords is also shown

Figure 8

The same analysis is presented for a pair of dyads in contrary
motion, (a,c) to (g,d):

Figure 9
 As I and I* are the triads from which the diatonic system is
derived, one sees that, in a situation involving parallel motion, the
uniqueness of the triad is undermined, which may have
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something to do with the prohibition against parallel motion of
unisons, fourths and fifths.  Quite apart from its relationship to
the diatonic system, this phenomenon is based on certain special
combinatorial   properties of the major triad, which we will come
to presently.

We now allow the letter I to represent some arbitrary non-
symmetrical trichord sonority. All of the trichords associated to I
may be derived from the hexachord H which is generated by the 3
positions of I on  a fixed base. This is best illustrated by an
example.

Let I = (0,3,5) = (CEbF) . Keeping C as the  bottom note,
write down the 3 positions for I:

Figure 10
   The top and middle voices themselves will be called  '3-
forms' , and designated as V and V' respectively:

Figure 11
Take any pair of notes from V and set them against the bass

note C. Doing this in all possible ways one derives the  3
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associated chord, J, K, L . Likewise the notes of V' taken in pairs
will generate their minors,  J* K* and L*  .

Figure 12
 Generally speaking, take any trichord I = (0,a,b ) (Mod 12) . 

Then:
I' = 1st Inversion = (0, b-a, 12 -a)
I" = 2nd Inversion = ( 0. 12-b,  12 - b + a)

The 3-forms V and V' are therefore
V = ( b, 12-a , 12 - b + a )
V' = ( a, b-a , 12-b)

V and V' are inversions. Each V form is internally
symmetrical relative to the bass note in the following :  the sum of
all 3 notes adds up to 0 (mod 12):

b +12 − a +12 − b + a ≡ 0(mod12)
a + b − a +12 − b ≡ 0(mod12)

Therefore:
1. Given the first two notes of V and the root  note ( C

in the example) , one can derive the 3rd note. One can also derive
the form V'.

2. Given the generating chord I with root note C,  and
a V-form derived from the top notes of the 3 positions of I , then
the forms V+4 , and V+8 , transpositions up a major third and up a
minor sixth   will also be the V-forms of sonorities ( differing in
general from I)   on the same root note.
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Proof  : If  I = (0,a,b) , then V = (b, 12 - a , 12 +a-b ) , and
V* = V+ 4 = ( b+4 ,  16 -a , 16 +a-b) . Since

 b + 4 + 16 -a + 16 + a - b = 36 = 0 (mod 12)
V* is the V-form of the sonority I* =  (0, a+4 , b-4) ,
while   V** = ( b+8, 20-a, 20+a-b)  ( transposed to the appropriate
octave) is the V-form of the sonority I** = (0,a +4 , b-4)

We next show that the condition that the note values of a 3-
form  U =  (u,v, w)  add up to a multiple of 3 is necessary and
sufficient that U  be the V-form of some trichord sonority I.

If u+v+w = 3k  (mod 12) , transpose U down an interval k, to
obtain the 3-form  U' = (u',v',w') = ( u-k , v-k, w-k) . Without loss
of generality we can drop the accents  and assume that

u+v+w = 0 (mod 12)
Then, letting u = b , v = 12-a , one  obtains the generating

chord
I =  (0,a,b) = (0, 12-v, u)

❆❆❆❆❆❆❆❆❆❆❆❆

However, given the root note 0, and V-form (u,v,w), there
are only 3 transpositions, namely V, V* = V+4 and V** = V+8 , that
imply  trichord sonorities  I, I* and I** that generate them. Then
these combinations (I,V,V') , (I*,V*,V*') and (I**, V**, V**') will
generate complete sets of associated chords.

Figure 12
To show this we start with a V-form (b,12-a, 12+a-b)
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( from root "0") , and transpose it up an amount r which is not a
multiple of 4 . If

V + r = (b + r,12 − a + r,12 + r + a − b) , then
b + r +12 − a + r +12 + a − b ≡ 3r(mod12)

which is congruent to  0 only when r = 0, 4 or 8.
Observe that in practical terms what this means is that all the

trichord sonorities generating the same pair of V-forms V and V'
are obtained by fixing the root, dropping one of the remaining
notes a major third, and raising the other note by a major third.

Summary
(1) Given a trichord sonority I ( assuming, for

convenience sake that I is not symmetric, i.e. has no repeated
intervals in its interval content) , all of the trichord sonorities
associated with I and its minor I* are gotten by taking the notes of
the V-forms, V and V' in pairs against the root note.

(2)   Given a V form above a root note, with
sonority I,  then V+4 and V+8 are also V-forms above that root
note. The trichord sonorities associated with them are derivable
from I by lowering one of the non-root notes by a major third and
raising the other non-root note by a major third.

(3) Not every triple of notes is a V-form.
❆❆❆❆❆❆❆❆❆❆❆❆

The possible V-forms
Let I be a trichord sonority with root-note "0", I =(0,a,b)  .

We make the reasonable assumptions that



#14...

(i) b > a > 0
(ii) I is in "closed form" , which means that 0 < b ≤8

The V-form is
(b,12 − a,12 + a − b) ≡ (b,−a, a − b)(mod12)

In the following table, the duplications b = a , b = -a , a-b = -
a, a-b = b
have been eliminated :

a= 1 , -a = 11 b = 2,3,4,5,6,7,8 a-b = 10,9,8,7

a=2, -a = 10 b = 3,4,5,6, 7, 8 a-b = 11, 9, 8

a= 3, -a = 9 b = 4, 5, 6, 7,8 a-b = 11, 10, 8

a=4 , -a =8 b = 5,6,7 a-b = 11, 10, 9

a= 5, -a = 7 b = 6 , 8 a-b = 10, 9

a= 6 , -a = 6 b = 7,8 a-b = 11, 10

a= 7, -a = 5 b = 8 a-b = 11
Table I

The distinct forms which are not transpositions  are :
V1 = (0,1, 5 ) = (CC#F)
V1*= (0,4,5) = (CEF)
V2 = (0,5, 7 ) = (CFG)  (   ≈ (CGD) )

V3 = (0, 3, 6) = (CEbF# )
V4 = (0,2,4  ) = (CDE)

V5 = (0,1,2) = (CC#D)
Theorem   : The V-forms are the symmetric trichords and the

major and minor forms of the exceptional chord E = (0,4,5) .  Proof
by inspection
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Corollary I :  With the exception of E, each V-form is
identical , (up to permutation)  to its minor  V = V' .

Corollary 2: The V-forms therefore, are precisely those
trichord sonorities which are not subchords of any of the all-
interval chords .

That this is more than a simple coincidence will become clear
in the ensuing discussion.

Figure 13
 Given a  symmetric V-form, what can be said about the

generator trichord sonorities from which it is derived?  Writing V
as (b , -a, a-b) , V will be symmetric when either :

(c1 ) b - (a-b) =  (a-b) +a ( mod 12) , or
(c2 ) b - (a-b) = -a -b ( mod 12)

The first condition is equivalent to
3a = 3b (mod 12)  or  (given that a = b  is

ruled out)
  b = a (+/-)4

The second condition reduces to
3b = 0 (mod 12), or b =  4  or 8 .
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If the V-form of I is a symmetric form. then I contains a
major third in its interval content . In fact,

Theorem :The trichords which generate symmetric V-forms
are precisely those which have a major third ( minor sixth, etc. ) in
their interval content.

Therefore, the exceptional forms E and E* are generated
by non-symmetric trichord sonorities which do not have a major
third in their interval content.

Figure 14
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Figure 15

Further Transpositional Properties of V-
forms and Roots

I. If an interval k be added to any note of a given V-form,
and that same amount subtracted from another note, the resulting
form will also be a V-form
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2. If an interval k be added to 2-notes of a V-form, and the
amount 2k subtracted from the third, the resulting form will again
be a V-form

3. If any note of V be raised a minor third ( k =+3) , and the
root R be moved up a semitone, the new form will be a V-form
over the new root.

These are all easily derivable by modular arithmetic. Briefly,
everything adds up to 0, modulo 12 !
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Figure 16
❆❆❆❆❆❆❆❆❆❆❆❆

Associational Techniques and Minor Forms
A few indications about the application of  symmetric

trichords in associative harmony:  If I is a trichord sonority, I* its
inversion, they will  have the same interval content. Consequently
the forms V* and V*' for I* will be permuted versions of  those for
I.

This suggests a  compositional technique utilizing both
symmetric and non-symmetric trichords one might  call
Combinatorial  Switching :
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Figure 17
In the above example, the forms V , V' , V* and V*' have

been drawn above and below their root notes of I = CEbF  and I*
= CDF respectively .

If one arbitrarily switches a lower note with an upper note,
the resultant 3-forms  will either be V-forms, or will generate
symmetric chords that are linked by association of 2-intervals to
the other chords derived from them. This is best illustrated by
example:

Figure 18
❆❆❆❆❆❆❆❆❆❆❆❆

Summary of Properties of Trichords and V-
forms

A. The forms V and V' of a trichord sonority I with root r=
"0", can generate the complete catalog of all sonorities associated to
I by taking their notes in pairs in combination with the root note.
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B. If intervals k,l,m are added to the notes of a V-form such
that
k+l+m = 0 (mod 12), the result will be a new V-form. In particular
if the numerical values of the notes  of one V-form are added in
sequence to those of another V-form, the result will be a third V-
form.

C. Transposition of a V-form by a major third produces a
new V form against the same root and a different sonority

D. The collection  of  V-forms consists of  those trichords
which are not sub-chords of any all interval chord.

E. Corresponding notes of V and V' , or V and V* , can be
switched to give other forms, more general that V-forms, which
generate associated chords, both symmetric and non-symmetric.

Figure 19
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❆❆❆❆❆❆❆❆❆❆❆❆
❆❆❆❆❆❆❆❆❆❆❆❆

The Chord Equation
Double Tonics

Invariant Dyads

For our present purposes we identify sonorities with
equivalence classes on the basis of:

(i) Octave equivalence
(ii) Transpositions
(iii) Positions ( a combination of ii and iii)

Fix some note  "0",  and label intervals by the number of
semitones from this root. Thereby one can identify any chord by
its "trope" of numbers C = (a,b,c,d ...) , modulo 12. The
equivalence conditions  can be restated as:

(i) For any note n , n ≈n+12
(ii) For any C, and integer k C ≈C+k
(iii) C is a trope, which means that

C= (a,b,c,d,...,h ) is equivalent to any rearrangement C'
All 3 conditions can be brought together as :

A = (a1,a2 ,...an ) ~ B = (b1,b2, ...,bn )
if there is some rearrangement of the a's

A' = (aj1 ,a j2 , ...,ajn ) = (a1
' ,a2' , ....,an' )

such that
ai' − a1' ≡ bi − b1(mod12)
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Problem :Given dyads (a,b) and (c,d) above a root note "0",
when is it possible to find a note x such that (x,a,b) and (x,c,d) are
transpositions of the same sonority, and how does one compute x ?
Such a note x will be called  an "implied tonic " .

Figure 20
 In the above example the dyads (a,b) and (d, eb ) are sub-

intervals of the same sonority ( c,a,b ) = ( c,d,eb ) . Likewise, (a,d)
and (b,d#) are sub-intervals of (bb, a, d) = (bb, b, d#) . For the
dyad pair (a,d# ) and  ( c,d ) their is no such bass note x , as one
can see through trial and error . The ability to find such a common
note  figures into the formation  of musical  suspensions   and
anticipations  in  associative harmony.

In terms of modular arithmetic one is being asked to solve
the equation (a,b,c and d are of course arbitrary "constants", not
the customary notes in the chromatic scale ) :

(x,a,b) = (x + k,c + k, d + k )(mod12)
 for unknowns x and k, for some rearrangement of x, a and b. We
call this the chord equation  .  If k = 0, c and d will be equal to  a
and b , or b and a  (mod 12) . This is the trivial case, so  one can
require that x and x +k be distinct.

x ≡ c + k;a ≡ x + k;b ≡ d + k(mod12)
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These modular equations can be solved in a straightforward
manner . The solutions depend on the relationship between a,b,c,
and d :

I.x ≡ a + c
2
;d − b ≡ c − a

2
(mod12)

II.x ≡ 6 + a + c
2
;d − b ≡ 6 + c − a

2
(mod12)

In both cases (c-a)/2 must be an integer, which implies that the
notes c and a must be separated by a certain number of whole
steps. It also means that the interval between the notes c and a is
double the interval between the notes d and b (modulo 12 ) .

Figure 21
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The above chart is based on the cross-matching of notes
according to the example given above. Usually the implied tonic is
unique, however it turns out that in certain cases it is possible to
compute 2 notes  , x and y, which can function as  implied tonics
of a  dyads (a,b) and (c,d)

To find these we start once more from the chord equation:
(x,a,b) = (x + k,c + k, d + k )(mod12)

This time we will look at all  possible ways in which the
notes of the left and right sides of the equation can be crossed
matched:

I.x1 ≡ c + k1;a ≡ d + k1;b ≡ x1 + k1
II.x2 ≡ c + k2 ;b ≡ d + k2 ;a ≡ x2 + k2
III.x3 ≡ d + k3 ;a ≡ c + k3;b ≡ x3 + k3
IV. x4 ≡ d + k4 ;a ≡ x4 + k4 ;b ≡ c + k4

From these  4 sets of 3 equations in 2 unknowns  we can
eliminate the k's . The equations in the x's  simplify to:

I.2x1 ≡ c + b;a − b ≡ d − x1
II.2x2 ≡ c + a;a − b = x2 − d
III.2x3 ≡ d + b;a − b ≡ c − x3
IV.2x4 ≡ d + a;a − b ≡ x4 − c

There are conditions on these equations: a and b must be
distinct, as must c and d. Also, none of the x's can equal any of
the notes a,b, c or d. Under these conditions it can be shown that
although there are 4 equations, there are only two solutions. Any
pair of equations can be solved, while the others will have either
no solution or solutions identical to these.
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For example, consider equations I and IV, with solutions x
and y. Write them as:

2x = c + b
d − x = a − b
2y = d + a
a − b = y − c

Eliminating x and y from this system one obtains the
relation:

c − b ≡ 4(c − b),or
3(c − b) ≡ 0(mod12)

Therefore, the interval between c and b must be 4 , that is to say, a
major third. The same relationship pertains to d and a.

Combining these restrictions with equations II and/or III,
one finds that a,b,c,d must all be separated by intervals of a major
third, which is impossible without at least two of them being
equal. If a is the same note as c, and  b is the same note as d (both
major thirds), then every   note is an implied tonic of that
progression !

There is one more possibility, namely:
a = C ; b = E ; c = E ; d = G#

Then there is no implied tonic. However the chords F#CE
and F#EG# are inversions. This situation may be treated by the
same methods that we have been using . The chart in Figure 22
depicts all those situations in which a "double root" may be found
beneath the sequence of a minor second followed by a major
third:
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Figure 22

These solutions can be strung together to form a cycle:

Figure 23 

In terms of  V- forms this is:
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Figure 24
One uncovers In the symmetries of the V and V' forms one

uncovers the structures underlying this cycle. Cycles can be
calculated for every sequence in which either the first or second
dyad is a major third and the other dyad is not an even number of
semitones.  Putting together all  cycles produces the grand cycle
which is depicted in Figure 25 :
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Figure 25
Table 2

The Associative Cycle of the Major Third
❆❆❆❆❆❆❆❆❆❆❆❆

Conclusion.
Exceptional Chords and Final Observations

The interval content of A. I. tetrachords is  unique. However
the association of trichords require that they have two non-
inverted intervals in common. These requirements taken together
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imply that none of the 3-note subchords of a single all-interval
chord can be associated.

Therefore none of the trichords contained in an all-interval
chord can be associated. Also, the sum of the numbers of their
notes cannot be a multiple of 3. The quickest way to prove this is
to try out the possible combinations for the chord I = (0,4,6,7) ,
then use the fact that I* has the same interval content, and J is
obtained from I through multiplication by 7 , a prime (mod 12) .

Since the sums of the numbers of the notes in a V form must
add up to a multiple of 3, it follows that the trichord sonorities
which are not subchords of all-interval chords are precisely those
whose notes add up to a multiple of 3, that is to say, the V-forms.

There is another way of exhibiting  these relationships which
may also be useful compositionally:

Let D1 , D2 , D3 represent the 3 diminished seventh chords:

  D1 = CEbF#A
   D2 = C#EGBb

   D3 =  DF#G#B
Choose a tritone from  any one of these chords, and one of

the minor thirds in another, then put them together as a
tetrachord. The result will always be an all-interval chord. The
proof is a simple exercise in modular arithmetic.
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Figure 26
❆❆❆❆❆❆❆❆❆❆❆❆
❆❆❆❆❆❆❆❆❆❆❆❆
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