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Relativity, Galilean, Special and General
The existence of a dynamics based on Galilean Relativity, on a connected two manifold M requires three principles.  
We assume a connection on M , from which it is possible to define a metric, curvature and geodesics in the usual fashion. 
Principle 1 
(a) (Local (relaxed)Uniformity): M is everywhere 
"locally self-isometric": Given any two points x and y on M , there exist neighborhoods , Nx Ny , and a diffeomorphism  on M,


 such that the metric imposed on  M  maps Nx isometrically  onto  Ny. We call such  surfaces uniform. Note that the isometry does not extend to all of M. 
Simply stated, P1 implies a constant curvature at every point 
of M. The converse is not true: for example, a surface formed by the 
perpendicular intersection of two planes in 3-space will have zero 
curvature everywhere, but neighborhoods of points along the 
intersection line will not be homeomorphic to neighborhoods of 
points away from the line. 
(b)  (Strong Uniformity) : M is everywhere self-isometric . Given x
and y, there is a congruence isometry mapping M into itself and x into y. 


The cone surface


satisfies the relaxed principle but not the strong principle: the cone is “self-similar” , not “self-isometric”. However, given two points on the cone, there are patches around each point that are isometric and congruent.
The sphere is obviously strongly uniform . The Torus in 3-space satisfies neither version of P1, having  its minimum curvature on the outer edge and a different maximum  curvature on the inner edge. Sphere, Cylinder, Flat Torus, Plane, and Hyperbolic Plane are strongly uniform. Such  surfaces have no distinguished points. 
On uniform surfaces it is possible to use  the Principle of Least Action to define uniform motion and constant velocities. All geodesics on such surfaces will themselves be locally or  globally self-isometric 1-manifolds at every point. 
Examples: Let C be a cone. If the central angle of C is less than /2, the natural geodesics on the cone surface geodesics cannot be 
globally self-isometric since they will have self-intersection points.  
However these geodesics  are locally self-isometric on segments which do not extend  to their self-intersection loci. Whether locally 
or globally, it is possible to define uniform motion, inertial motion 
and inertial frames along geodesics, as those that covers equal 
distances in equal times. 
	Definition: The motion of an object at a constant  speed, along a geodesic  (measured by arc length) will be called an inertial motion . 
Uniform curves which are not geodesics exist of course , and it is possible to define uniform motions along them. We do not call these inertial motions. The circles other than great circles on a sphere are uniform curves, but they are not the paths of least action and hence motion along them is not “inertial” . Although the torus is not a uniform surface in our terms, the rings normal and parallel to the plane of the torus are both uniform curves and geodesics, and one can speak of inertial motion along these curves.
Since we will not be discussing collisions in  this paper, masses  and momenta can be ignored.  
Principle 2 : A mass moving along a geodesic in uniform motion cannot  detect its own motion. Obviously one can endlessly debate what is  meant by saying that's one "motion" cannot be "detected". Perhaps one ought to put Principle 2 into the form of a definition:
Definition: An undetectable motion will be defined as the motion of an observer along a geodesic at a constant velocity (as measured by its arc-length). 
Such a definition makes “undetectability” contingent on the choice of a metric, and should put to rest the anxieties of the 17th century Inquisition as to whether the earth “really moves”! 
The problem still remains, how does one detect a detectible motion? Here mathematics has to yield to physics: 
Definition: We will say that one's motion has been detected by virtue of  the following kinds of evidence: 
(1) There is increase, decrease or dissipation of energy, generally in the form of heat, and attributable to no other cause. 
(2) There are changes in the local geometry, notably the 
curvature. For example, one could detect changes in local curvature 
by drawing a triangle in one's immediate neighborhood and 
measuring the sum of its angles. One might also argue that the space is changing while the object remains “in one place”. This is an abuse of language. “Motion” by definition is the change, through time of the location of mass or some other substance, through space. Space itself cannot move; if it does we are talking about some other  “substantial quantity” than space. Things move through space, and if there is a change in the curvature of one’s ambient space, one can conclude that one’s motion is absolute. Either that or give up the notion of space as being distinguishable from matter altogether, as is done in General Relativity.
  In General Relativity, not only is one speaking of changes in curvature, but one also gives up the notion that space is Euclidean. The projective properties of space also change. “Motion” itself must be redefined, and the question “detecting one’s own motion” becomes meaningless. 

(3) Certain pre-determined  “immutable objects”  (the "fixed stars" of Newton) appear to move. For example, for observers on the surface of a cone, its  vertex can be posited  as an  immutable fixed star.  The detection of its motion would imply  one's own motion. Observers moving along cone geodesics will  always observe movement of the vertex. Objects moving along a perpendicular circle (Figure 1), would not register such a motion but would be able to observe a loss or gain of energy, the presence of heat, etc. 
[image: ]
(4) The metric itself changes. That is to say, if  one cannot detect one’s own motion, but one can detect a change in the metric, one might argue that this indicates the presence of either motion or a gravitational field. This appears to be the viewpoint  of General Relativity.  
Definition:   An  inertial frame is the collection of all real and potential observers {O} which, to  an observer O subject to an inertial motion on a uniform surface M,  appear to be at rest. 
The existence of inertial frames was fundamental in the arguments advanced by Copernicus, Galileo, Newton, and others to argue that the earth was spinning around its axis and turning about the sun: the assumption that the Earth is stationary, obliges one to adopt a different law of gravitation for the sun, each planet, and the stars.  If there is one set of universal dynamic  law, to which the Earth is no exception, one  must acknowledge  a principle of universal relativity of inertial motion. The existence of reference frames identifies  a host of secondary deviations from them  through  which one can infer the presence of accelerating forces.
	Observe that General Relativity abolishes reference frames!  For  an excellent treatment of some of the problems involved, look at this article, available on the Internet: Does Quantum Mechanics Clash with the Equivalence Principle—and Does It Matter?: 
 Elias Okon & Craig Callender (2011). http://philpapers.org/rec/OKODQM
Principle 3:  The relative motions of Inertial Frames form a group 
What this means is the following: Let O1 , O2 , O3 be 3 observers,  each ( by definition) at rest in his own inertial frame. 
(i) If O1 is at rest relative to O2 , then O2 will be at rest 
relative to O1 . (Identity) 
(ii) If O1 sees O2 as being subject to an inertial motion, then 
O2 sees O1 as being subject to an equal and opposite inertial 
motion. (Inverse) 
(iii) If O1 sees O2 as moving in an inertial motion of velocity 
v1 and O2 sees O3 as moving in an inertial motion of velocity v2,  
then O1 will see O3 as moving in a inertial motion of velocity 
v3 =  f(v1,v2 ), where f is a group addition, (simple addition, tangent addition, relativistic addition, etc. )
 
Two things are implied by these definitions. O1 will observe 
(i) that O3 is moving along a geodesic ; and 
(ii) The relative velocities between O1 , O2 and O3 are given by f. 
Definition: A Relativistic Manifold (Galilean, Special relativistic, etc.) is one on which it is  possible to build a kinematic structure satisfying Principles 1,2, and 3, in either strong or relaxed forms.  Informally speaking, an inertial motion is uniform motion along a geodesic. In a relativistic manifold the inertial motions form a group and one can speak of inertial frames and rest frames.
The ramifications of being able, and not being able to detect one’s own motion can become ratherserious , as one knows from the history of relations between Galileo and the Vatican. Feeling that one is at rest is apparently not enough; secondary evidences (Foucault Pendulum, Transit of Venus, etc.) can indicate that one’s own motion may be a better explanation. 

Applications to some  fundamental 2-Manifolds:
(A) Principles 1 and 2 are satisfied on a spherical surface. 
However , although a sphere is a strongly  uniform surface, the inertial motions do not form a group. Let X,Y be two observers, initially at rest, with X on the equator, Y between the equator and North Pole.  If X starts to move along the equator at a uniform velocity u, he will observe Y to moving with a lower velocity  along a circle which is not a great circle, thus not a  geodesic. 
(B) The cone surface satisfies the relaxed form of P1 but not the strong form. It does not satisfy P2 . It does satisfy  P3 : the geodesics are everywhere flat, and inertial motions form a  Group, at least within small patches determined by the distance from the vertex.
(C) There are 3 distinct classes of geodesics on the cylinder . Despite this, as we shall show, the intrinsic geometry of the 
cylindrical surface is a Galilean relativistic manifold. The same is true for the flat torus which, however, has loops of all orders and geodesics that are everywhere dense in the manifold.  
On a Special Relativistic Manifold, inertial motions are further
limited by two conditions: 
P4 ( Light Principle )  : 
(i) The speed of light , c , is an invariant constant in all 
reference frames. One can argue that this implies that one cannot detect changes in the speed of light:  see my paper  “On Spontaneous Changes in the Speed of Light” http://www.fermentmagazine.org/lightspeed.pdf
	(ii) c is also the maximum speed at which a signal can be 
transmitted.


	[image: ]
u2 +v2 = 2 ,  = constant
     Intrinsic local  geometry on K is Euclidean: K is a ruled surface with  0 Gaussian curvature. Choosing an arbitrary “origin” O on K, and taking as the ‘natural length” the circumference D = “1”,  the intrinsic coordinates on the cylindrical surface are simply (x,y):


We will be studying Galilean Relativity in the space time (x,y,t). Initially we assume that the cylinder is embedded in an ordinary 3-space (u,v,w; see figure 2) where we, as observers can observe a particle p as being either “at rest”, or moving along a geodesic line at a fixed speed v relative to us. This is not an inertial path in 3-space, but one of 3 possible lines: a generator line, g; helix h, or loop l. We will show, however, that these are inertial frames on the cylinder K.We open K along a generator line including the point, p. and flatten it on the plane:
[image: ]
In figure 3 the “origin” O has become a pair of identifiable  points O and O’, at unit distance apart in the vertical dimension. The line connecting them is a circular loop, l. All of these loops are parallel and of the same length, which is conventionally set to 1. It is completely flat in the intrinsic geometry.
Right away one sees the kind of problem that arises when trying to impose Einstein/Poincaré Special Relativity onto the cylinder: Consider twins J and H  at O . Let H move away from J at velocity v. Then, just before reaching O’, suppose H decides to turn back to O. By the twins paradox, he will be younger than J when he returns. However, had he continued on a slight distance, the motion between J and H would have remained completely inertial from beginning to end and there would be no difference between their  ages ! 
One cannot have Special Relativity in Cylindrical Flatland. 
Galilean Relativity poses no such difficulties. Figure 3 shows the 3 kinds of geodesic (as seen from the ambient 3-space). The generator lines g are at right angles to the loops. The helices h cut the generators  at a fixed angle , . Either or tan can be called the “pitch” of h relative to g. 
From the ambient space, the distinctions between l, g and h are absolute, but become completely relative when seen by an observer on K.  Flattening the cylinder as in Figure 3, h turns into a striation
To better study the helices, we develop the cylinder over 
the plane. The plane itself is fibrated by a series of congruent 
horizontal strips, each representing a turn of the helix. These strips are identified with the initial strip, and the two lower generator lines identified with each other to reproduce the cylinder.  (See Figure 4) 
The helical line h "connects up" as an unbroken  straight line formed by conguent segments h1 , h2 , h3 . 
[image: ]
Basic Theorem
No reference frame in cylindrical Galilean space-time 
has any distinguishing qualities. It is impossible by any experiment 
to determine one's own velocity along any of the geodesics l, g or h . Furthermore, the distinction of loop, generator or helical geodesic is relative only. Given any geodesic  s , and an inertial motion of velocity v (as seen from the embedding space),  there exists  inertial  reference frames  on K in which it will appear to be, respectively, a loop, generator or helix. 
Proof :  As embedded in 3-space, the points on the cylinder K , with radius , have external coordinates (u,v,w) . (See Figure 2) The equations of the 3 kinds of geodesic are, respectively: 
(1) Generators  : u= c1 , constant ; y = c2 ,constant  c12 + c22 = 2 
(2) Loops : w = c3, constant. 
(3) Helices  :  u = wcos, v=  wsin 

 On the flattened surface (Figure 3) the natural intrinsic coordinates are  the generators  and the loops,  (g,l) , with the circumference D conventionally given as the natural unit of length, 1. The classes of geodesics are: 

[image: ]
Assume that observer p0 is 'at rest' relative to the reference frame of the embedding space (u, v, w). p0 observes the 3 “spectators”  p1 , p2 , p3  moving along the 3 kinds of geodesic with velocities v1 , v2 , v3 . 
Question 1 : How do the spectators  see the motion of p0 ? 
To p2 , p0 is moving in the opposite direction along a 
generator, at velocity -v2 . Likewise, to p1 , p0 is "rotating" along a  loop at velocity –v1 . To see how the motion of p0 appears to p3 , develop the cylinder on the plane: 
[image: ]
The lines g , g', g'', etc., cut the lines h,h',h'' at the same angle Therefore, when p0 sees p3 moving along a helix with pitch tan, p3 will see p0 moving away on a helix with pitch tanß 
= tan( )  = -tan   , therefore at velocity -v . 
Question 2: How does the motion of p1 (along g) look to the observer at p2 (along l) ? Clearly this will be a helix, the pitch of the helix being a function of the ratio of the velocities v1 /v2 . Suppose that p2 moves a distance d= v2t along the generator ,  t some fixed amount  of time. p1 will then move along the loop a distance v1t (mod1).The successive recyclings of this loop translate into apparent twists of the path of p2 around the cylinder. Hence -v1/v2 =  tan is the pitch with which this helix appears to cut the generator seen by p0 . This generator is perpendicular to p1 's  perception of the direction of its own loop. 
[image: ]
Likewise, p2 will perceive p1 moving along a helix with angle 
 tan = v2 /v1 . The relative velocity is given by the 
length of the hypoteneuse of the above triangle, divided by the 
time t. 
Question 4: Finally one asks how a traveler along one helix h1  will look to  someone traveling along another helix h2 . 
Observers at every point on the cylinder are at the origin of a natural Cartesian frame, with abscissa given as the generator g, and ordinate the loop l. By developing the cylinder on the plane, one sees that two helices  will either be parallel, or continue to intersect infinitely often. If those intersections are synchronized for spectators travelling at the same velocity  they will appear to be loop geodesics. If the velocities are different they will appear to be helices.  Geodesics go  into geodesics.  
Conclusions:
(1) The dynamical space on M  is everywhere self congruent 
(2) The inertial motions form a group 
 (3) Given two points, p1, p2 on the cylinder, at rest relative to the 3-dimensional exterior, one can impose an inertial motion on p2 that will make p1 appear  to move on any one of the 3 geodesic forms, loop, generator or helix. 
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Galilean Relativity ona Cylindrical Surface

Figure 2




image6.wmf
)

1

mod(

]

1

,

0

[

,

=

Î

Î

I

y

R

x



image7.jpeg
Figure 3




image8.jpeg




image9.jpeg
(i) 1= const.(mod D) (generators);
(ii) g = const. (loop geodesics)
1=mg + b (mod D.)

Figure 5
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