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 [1] The requirements for an inertial group, that is to say, a 

group of  inertial motions on a homogeneous manifold:   

 For the moment we assume that O sees himself as  stationed 

on a 2-dimensional surface, MO , where the subscript signifies that 

someone else moving along this surface might see something 

different  ; O himself can be "3-dimensional' as we are, but all of 

his measurements are on M, even as we measure distances and 

motions on the earth.  

 (a) In Galilean relativity there is no "absolute rest". There are 

enough problems with this that one does not have to go to special 

or general relativity for a long time to come. 

 Since there is to be no "absolute reference frame", there must 

be criteria whereby an observer O can determine that he is on an 

inertial path. The classical definition by Einstein is the following: 

 O is assumed to be at rest   in an inertial reference frame , if 

he is  unable to detect his own motion ,  

 Pragmatically, this means that he is equipped with a 

collection of motion detectors which collect data of some sort 

indicating the absence or presence of motion. We select 3 out of a 

host of possible indicators of motion: 
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 (1) The local curvature of space under goes no change. O 

draws a triangle around his feet made up of sides of a standard 

length, say a 3-4-5 triangle T which would be a right triangle in flat 

Euclidean space, but have other angles on a sphere. Periodically he 

measures the sum of the angles of T. If this changes then he 

concludes that he is not in an inertial frame 

 (2) There is no force either pushing him or acting on him. 

This can be detected either as 

  (i) Heat 

  (ii) A gravitational attraction. 

 In the absence of these O will assume that he is moving in an 

inertial frame.  

 It is clearly easier to see what is going on, if one assumes that 

there is an n-dimensional  manifold M "embedded" in a higher 

dimensional manifold M* in which M is perceived to be unmoving. 

If O is a particle on M, and I is another witness ("myself") in M* , 

then we can define an inertial motion as follows: 

 (1) M is homogeneous. There is a congruence carrying any 

point on M into any other point on M. It "looks the same" to I when 

seen from any vantage. For example, if M* is 3-space, then the 

homogenous manifolds would be the plane, cylinder, sphere, 

straight line, helix and circle.  

 From "I's vantage", any observer O moving along a geodesic 

path on one of these at a uniform velocity v would imagine himself 

at rest. But what does I know of what O thinks? The key is in the 

time dimension. If U and V are moving along the length of a helix, 

and, to I, U moves at velocity u, V at velocity v, both can adjust 
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their measurement of time by altering the speed of the hands of 

their clocks, so that each covers "one unit of space" in "one unit of 

time". By relating only to I they might imagine themselves both to 

be at rest.  It is only when comparing their paths with one another 

that they detect "relative motion".  

 (b) Assuming that the determination that one is  "at rest in one's 

own   reference frame"  has been made, we ask for the conditions for an 

inertial motion , and for an inertial group   of motions .  

 Let A and B be two observers, each of which determines himself to 

be "at rest". In an "inertial dynamic space", if A and B see themselves as 

being at rest, then each will see the other as moving along a geodesic   at a 

uniform  velocity   . If A sees himself at rest, and observes that either 

  (i) B is not moving at a uniform velocity; or 

  (ii) B is not moving along a geodesic ; 

  (iii) or both 

 Then B must detect evidence that he is accelerating  .  

 (c) The inertial group. This demands the following conditions 

  (i) Suppose A observes that  B is moving along a geodesic at a 

uniform velocity v. Suppose there is another observer C, when B 

observes to be at rest relative to himself. Then A will observe C to be 

moving at v , (where v is a n-vector velocity)  . This condition allows one 

to speak of "reference frames".  

  (ii) Suppose A observes B moving along a geodesic at velocity 

u and B observes C moving along a geodesic at velocity v. Then A will 

observe that C moves along a geodesic at velocity w = u (+) v, where (+) is 

a group operation with identity 0, and inverse -u for u, etc   .  
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 In Euclidean geometry, time is a dimension outside the metric. 

However, in Galilean Relativity it is metrizable with respect to the 

spatial metric. This makes possible the notion of a uniform velocity, v. 

Consider a "1 dimensional" Galilean space, with metrizable time 

coordinate. The Cartesian representation is an affine space. 

 
Through altering the ratio of the space unit 1t  to the time  unit 1s in the 

ratio of proportionality k, a "velocity" v = x/t , is shifted to another 

velocity  

v' = kx/t. This is neither a rotation nor an isometric transformation but 

what can be called a "similarity transformation": a change in velocity can 

be interpreted as a change in units, and the reference frame on L  "sees" 

the world exactly the way the world is seen by the frame on D.  

 Needless to say, this can easily be cast in the form of "topological 

invariance", so that for example, motion along any infinite, non 

intersecting arc in space can be mapped diffeomorphically in such a way 

that the inertial group on R is preserved. 

 (2) The inertial group in the pseudo-Euclidean or Minkowski space 

is unusual in that it is not a similarity group, but an isometry connecting 
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all 4 dimensions of x,y,z, t. Linear trajectories become linear trajectories 

under a Lorentz transformation, but the group law is very different: 

 

 There appears to be nothing to prevent the combination of both 

forms of inertial group in a group product which applies over a 3-

dimensional space with coordinates (x, r, t ): The group for x, t is the 

Galilean group on Euclidean space; the group for x, r  is the Lorentz 

group on pseudo-Euclidean space. The metric on the "x,r" plane is 

. There is no metric on the x,t plane, but the 

similarity group creates equivalent Galilean reference frames. If L is the 

Lorentz group, G the Galilean group, then the group governing this 

universe is 

 

Explicitly, one must posit a "compound velocity" v = (u,w). Observers 

A,B, C. A observes that B moves at velocity v1 = (u1 ,w1 ) ; B observes that 

C moves at velocity (u2 , w2 ). Then A observes that C moves at 

compound velocity v3 , where   

 This construction implies the possibility of two time dimensions. 

In a later part of this paper we will show that there is no contradiction 

between this and traditional Newtonian mechanics. Indeed, there may be 

a model for this phenomenon in the "cosmic time" of the expanding 

universe. "Red shifts" of frequency are assumed to combine linearly, 

while mechanical motions are governed by the Lorentz Group.  

        One runs of course into problems with the notion of distance. If a 

system is observed to move away from the observer O, with a compound 
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velocity v = (u,w), how "far" has he "gone" after one hour? Answer: how 

do cosmologists and astronomers solve this? Perhaps simply D = (u+w)t. 

Perhaps distance is an illusion produced by time, energy and the 

expanding universe.   

 One can even propose a model for two different sorts of "clocks" to 

"measure" the two kinds of time. Velocities in the "cosmic time" are 

measured by red shifts,. The regular pulsation of light frequencies 

function effectively as quantum clocks.  

The quantities of "mechanical time" are measured by the standard 

distances traversed by a light beam. Thus "light trajectory" and "light 

pulsation" are the two clocks operating in the two time dimensions.    

 
❆❆❆❆❆❆❆❆❆❆❆❆  

 One is naturally interested in exploring all the possibilities inertial 

groups, and for manifolds that support them. An  important negative 

result is that one can't place an inertial  group structure on a spherical 

surface with standard metric: 
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 a is "at rest in its own frame" on the equator . c is observed to move 

away from a along EE'  at uniform velocity  v. S being the "ambient 

space", the universal curvature is the same everywhere. c experiences no 

forces of either friction or a Coriolis nature; the angle sums of standard 

triangles do not change. 

 Let b represent another location on the sphere between the equator 

and the North Pole, where there is an observer "at rest" in the reference 

frame of c. 

 Both b and c observe a to be moving towards the West at a uniform 

velocity v. However a sees b moving at a different velocity, along a curve 

that is not a geodesic  ! Let the radius of the sphere be R. a observes that b 

makes an apparent circle around the globe with a radius r < R. Since the 

time for a complete circuit of c is the same as the time for a complete 

circuit of b, it follows that c covers a distance of length 2πR in  the same 

time that b covers a circuit of length 2πr . It follows that the apparent 

velocity of b from the vantage of a is u = v(r/R). From these observations 

a concludes 

  (1) b is not in the same reference frame as c. In fact  

  (2) b is not even moving along an inertial path 

 At the same time, b and c have no difficulty in concluding that they 

are in the same reference frame. One cannot argue that such circuits be 

included into the class of "inertial trajectories" unless one wishes to 

exclude great circles altogether. An inertial path is completely 

determined by the Lie algebra element, or initial direction, in which a 

particle begins moving: it cannot move in two directions at once. 

 One might be tempted however, to see if a structure of "inertial 

trajectories" could be constructed on a cone, on which only one   direction 
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is permitted at each point; namely the motion along a circle 

perpendicular to the axis of the cone: 

 
Similar arguments show that, when b and c see each other as being at 

rest, 

a "moving observer" along AA' will observe them to be moving at 

different velocities.  

 One can of course place a Galilean structure on the cone in which 

the inertial paths are the conical geodesics. The conic surface is "flat", 

having zero curvature everywhere, and the local geometry is always 

Euclidean . The combination of Galilean relativity with self-intersecting 

geodesics may produce some exotic dynamical systems , worth pursuing 

in another paper.  
❆❆❆❆❆❆❆❆❆❆❆❆  
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