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 Our discussion is situated throughout in a 2-manifold M. M 

is diffeomorphic to an open sub-domain of R2, connected but not 

simply connected, and without boundary. A generalized projective 

geometry, G, will be installed over M, with the property that for all 

but an exceptional class of line-pairs and point-pairs, two lines 

intersect in two points, and two points can be joined by two lines. 

G is therefore a self-dual geometry, a property that is enshrined in 

the following meta-axioms: 

LANGUAGE META-AXIOM: The language of G will be that of 

projective geometry, including itsEuclidean, elliptic and hyperbolic 

variants.  

DUALITY  META-AXIOM    : Every theorem and construction 

involving the concepts of line and point produces another theorem 

or construction when line and point are interchanged in their 

statement.  

 Let MC   be the embedded image of M in R2 . The closure of 

MC  will add the line at infinity L� and a point at the origin, called 

the vertex V. These can be formally adjoined to M via the 
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technique of compactification. Sometimes we will be working in 

M, sometimes in      

 

 MC. When there is no confusion they will be referred to, 

indifferently, as M.  

A. Construction Axioms 

 Axiom I: Lines in G and on M are curves without endpoints, 

with a single terminal endpoint in their closure, on the line at 

infinity. 

 Definition: Lines L1 and L2 are called parallel if their closures 

meet at the same point on the line at infinity 

 Axiom II: Generators in G and on M are curves without 

endpoints, with a terminal endpoint in their closure on the line at 

infinity, and the other terminal endpoint in their closure at the 

vertex.  

 Definition: Points p1 and p2 are called "seperal" 1 if they fall 

on the same generator. Because of their endpoint properties, it is 

clear that lines cannot be generators, nor generators lines.  

B, Intersection Axioms  
 Axiom III:   Any two non-parallel lines intersect in two and 

only two distinct points 

 Axiom IV:  Any two non-seperal points can be joined by two 

and only two lines. 

 Axiom V:   A pair of seperals, p, and q can be joined by no 

line and only one generator.  

                                         
1  Some may argue that this should be spelt as 'separal', but it is obvious that the word 'separate' is 
mispelt in standard English. 
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 Since seperal points cannot be joined by a line, it follows that 

generators can intersect lines in at most one point.  

 Axiom VI:   For any point p, there is only one generator gp 

through p.  

 Axiom VII:   Let L be a line and p a point not on L. Then one 

and only one parallel line can be drawn through p and parallel to L. 

 Axiom VIII:  Let L be a line. Then there is one and only one 

generator g parallel to L, .i.e. that meets L at the line at infinity 

 Axiom IX:    Let L be a line and p a point not on L, and gp the 

generator through p. If gp is not parallel to L, then there is one and 

only one point q on L seperal to p. If gp is parallel to L then the 

point at infinity where they both meet can be taken as the unique 

seperal, q, to p on L. 

 Since the line at infinity has been removed, the manifold M is 

topologically equivalent to the Euclidean Plane, E2 with a point 

removed at the origin. One can therefore apply the Jordan Curve 

Theorem to M and speak of the "interior”, IntD of any simple non-

intersecting closed curve in M. 

 The fundamental rigid body in G is the "bi-angle", or 

"bangle" formed by two non-seperal points a and b, and the line 

segments A and B connecting them: 
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Y

The Bangle B(x,y,X,Y)

IntB

 
 Theorem:  A bangle is a simple, non-intersecting closed curve. 

 Proof:  If segment X intersected Y at any point other than x 

and y, then 2 lines would intersect in 3 points, contrary to the 

axioms. 

 Theorem: (Jordan Curve): The interior IntB is well defined.  

Definitions: 

  A region D with boundary C, where C is a simple non-

intersecting closed curve, is said to be weakly convex, if for every 

pair of points a, b onD
−
= D∪C , there is at least one line segment 

between a and b entirely in D
−

 .  

  A region D with boundary C, where C is a simple non-

intersecting closed curve, is said to be strongly convex, if for every 

pair of points a, b onD
−
= D∪C , both   line segment  

 

between a and b lie entirely in D
−

 .  

 Axiom X:  All bangles are strongly convex 
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Theorem:   The bangle interior IntB (p,q) of two points always 

includes the vertex.  

 Proof:   Let gp be the generator through p. Let the component 

of gp passing through the interior of B (p,q) be designated hp. Now 

hp cannot exit B. Were it to do so it would intersect either P or Q, 

one of the two line segments defining B. This would make gp a 

line, not a generator. 

Theorem:  Let D be a weakly convex domain bounded by a simple 

closed curve, which does not include the vertex in its interior. Then 

D has the property that all lines and generators intersect in at most 

one point, that is to say it cannot be strongly convex anywhere. We 

will call this the "Euclidean property". 

 Clearly, if there were two points in D for which two lines 

could be drawn between there, D would include the vertex. 

 Corollary:   Let p be a point other than the vertex. Since, in 

MC, V is just a point in R2 which has been removed, it is possible 

to draw a normal convex neighborhood Np around p which 

excludes V. This will have the Euclidean property.  

 Metatheorem:   Any double-intersection geometry which 

includes Axiom X must have generators and seperals, that is to say, 

point pairs that are not connected by two lines.  

 Proof:   Let B(p,q) be a bangle. Let Np be a locally Euclidean 

neighborhood around p. Choose a series of points converging to p,  
r1,r2 ,..., rn, ...= {r j} such that: 

rn ∈B(p,rn−1),n = 1,2, ...  
 By strong convexity, each bangle is contained in the previous 

one. One can therefore take the topological limit and write: 
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C1 = lim B(p,rn
n→∞

)  

Take the closure of C1. This is still strongly convex. If it has a non-

trivial interior, one may continue the process with a new set of 

points converging to p, and so forth. The series cannot converge to 

a single point, that is to say to p only, because all of the regions, 

bounded by lines with the double intersection property,  must 

cross the boundary of the locally Euclidean neighborhood Np 

.Thus  the descending chains of regions eventually arrive  at a 

figure whose boundary is a single line segment S with no interior.    

 Since generators are drawn from the line at infinity to the 

vertex, the vertex of MC must lie inside the image of B in R2. Hence 

in the compactification of M, V lies inside B. 

 Since the vertex lies in the interior, one can construct a locally 

Euclidean neighborhood Np around p which will include V as a 

boundary point. Thus the generator segment S can be extended all 

the way to the vertex. As p is arbitrary, S can be extended in the 

other direction all the way to the line at infinity. 

  Theorem:  Generators extend from the vertex V to the line at 

infinity L.  

 

 
A Model for G 

 The basic features of double-intersection geometry have been 

abstracted from the geodesic geometry on the cone. The general 

equation for a right circular cone in Cartesian coordinates in 3-

space is given by:  
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z2 = k(x2 + y2 )  

We will be looking at one particular example of this, namely 
K: z2 = 3(x2 + y2 )   

 

 Conical Geometry provides many examples of simple yet 

interesting extensions of ordinary plane geometry. Since the Gaussian 

Curvature at each point is 0, the local geometry on the cone surface is 

everywhere indistinguishable from Euclidean geometry. We ourselves 

may well be living on a 4-dimensional cone’s surface and not know it 

until a light beam returns to us from an unusual direction.  The geometry 

of a 3-D cone's surface can easily be visualized by unfolding the cone 

and laying it flat on the Euclidean plane. 

α 2ψ

g g'

p p'
p

Particle p on a conic surface, 
on generator line g becomes 
the pair pp' when opened 
along g and laid flat.

g

r1r2

 
 

Figure 1. 
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 The geodesics become ordinary straight lines, while the generators 

translate into  the  pencil of lines  emanating from the vertex. The conic 

sections have more complicated equations.  

 Let the central angle of the cone in 3-space be designated 2ψ  , and 

the central angle of the unfolded cone  α   ;  the reason for the coefficient 

2 will become apparent in a moment. In Figure 2  the cone has been 

unfolded along the generator line g . Let pp'  be a line drawn  across the 

flattened sector, intersecting the two copies of the generator line at 

distances r1 and r2 . If r1 > r2  then it is clear that if the cone be refolded to 

its original configuration in 3-space, these two points will not coincide . 

Therefore the generator line gwill intersect the geodesic pp' in two places 

. Since generators are also geodesics, this already shows that  every cone  

whose vertex angle in the corresponding flattened sector is less than  π    

has points between which there are more than one geodesic  .  

 We now compute  the relationship between angles 2ψ   and   α   :    
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Figure 2 

 From Figure 2 one sees that if B is the circumference of the upper 

circle , A the distance from the vertex, then B  will be both   the 

circumference  of a circle of radius R in space, and also the length    of a 

circular arc   of length A in the plane when flattened out. Clearly:  

sinψ = R
A
;

B = 2πR;
 

 

    α =
B
A
=
2πR
A

= 2π sinψ  
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From this one sees that, if k = 3, the “central angle" α   will be 

π   ,  and the two copies of the opened generator will lie on the same 

straight line.  

 Theorem:   The intrinsic geometry on the surface of K, minus a 

generator g and the vertex V, is that of a Euclidean upper half plane 

with the abscissa xx' removed. In particular there are no self-

intersecting lines.   

 Proof: Let l be a geodesic curve on the surface of K. Let h be 

the generator whose intersection with l cuts off the minimum 

distance from V to l. h will then be perpendicular to l, and it is clear 

that the generator g which forms an angle of π / 2  with h will be 

parallel to L. 

 

 

h

l

K

g

V Vg g

h

l

 
 If the cone surface is opened along the generator g and laid 

flat on a plane, the line l will be parallel to the two branches of g. 

Since the line l is arbitrary, opening the cone along any generator 

will produce a Euclidean geometry on the upper half plane, 

provided that no line crosses the generator. In particular 
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 (1) There are no self-intersecting lines, (as one finds for all 

values of k > 3) 

 (2) The sum of the angles of a triangle = π .  

           All relationships between lines and points are isometric with 

those of Euclidean geometry on the upper half plane. 

 If one returns the generator g to the opened cone surface, then 

identifies the lower half plane with the upper by rotating the upper 

half plane counter-clockwise on R2 , one constructs the double 

intersection geometry G.  

V

L1 L2

L2'
D D

 
L1 and L2' are segments of the same line. L2 is the transposition of 

L2' to the upper half plane by identification. L1 and L2 are 

segments of the same line in the double intersection geometry, G.  

 

  Note that the distance D of each branch of the line from the 

vertex is the same. Using this it is a simple matter to convince 

oneself, either by working with diagrams , or by algebraic 

solutions on sets of simultaneous linear equations, that all lines are 

either parallel or intersect in 2 and only 2 points.  

 Theorem:   The angle around the vertex is π . Clear by 

construction 
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 Theorem:   If B(x,y, X,Y) is a bangle, then the sum of the angles 

at the two vertices is π . The diagram for a bangle with one vertex on 

the opening generator is this:  

Va a

x

y y

X
Y

α

β γ

 
 The distances yaV and Vay are equal: the two points y are 

identified. The angle at the y vertex is created by bringing together 

the two branches of the generator. Therefore the total angle at the 

vertices of the bangle is equal to the sum of the angles of the 

triangle on the diagram, and is therefore equal to π  .  

 Theorem:  Let T be a triangle on the cone surface which 

includes the vertex. Then the sum of the vertex angles of T is 2π   .  

 Once again this theorem is easily seen to be true by virtue of 

a properly drawn diagram. We imagine ourselves to be looking 

down on the vertex of K as it is positioned in 3-space: 
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V 

A 
B 

C 

 
 The sum of the angles in each of the 3 subtriangles is 3π . 

Since the angle at the vertex is π , one subtracts this to obtain 2π  for 

the triangle ABC.  

 In general, if P is an n-gon with the vertex in its interior, the 

sum of its vertex angles = (n-1) π .  

 One can say, in general, that the criteria for any set in G to 

have "non-Euclidean" properties, is that points intersect every 

generator at least once. If even one generator g is not intersected, 

the cone can be unfolded by cutting along g to produce a Euclidean 

upper half plane. 

 There is a simple relationship between the lengths of the 

sides of a bangle B (p,q,P,Q), and the lengths of the radius vectors 

from the vertex to p and q  
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Va a

x

y

X
Y

α

β γ
b

y'
 

 Theorem:   X 2 + Y 2 = 2(a2 + b2 )  

 It is sufficient to note that the line b from x to V is the 

median, to the generator segment y’Vy. Let the angle between b 

and Vay be designated θ  . Then the angle between b and y'aV will 

be π−θ  . By the law of cosines: 
Y 2 = a2 + b2 − 2abcosθ
X 2 = a2 + b2 + 2abcosθ  

 The result follows. 

 

 Corollary:   If X �  Y, then: 

 
X ≤ a2 + b2 ≤ Y

 

Circles 

       Using the vertex as center, draw a circle C on G around V. The 

following results can be easily computed: 

 (1) If the radius of C is r, then the circumference will be π  r 

and the area 1/2 πr.  
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 (2) Let r= 1. If the sector formed by an inscribed angle 

includes the vertex, then the value of the angle is one-half the 

subtended arc plus    π/2.  

A

B

C
V

 
             Angle ABC = 1/2 (AC + π) 

 

(3) If the inscribed angle does not include the vertex, then its value 

is twice the subtended arc 

 

 

  

A

B

V

C  
         Angle ABC = 2AC 
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Tribangles 
  

 Given 3 points A,B,C, so that no two are seperals, connect 

them with non-intersecting lines a =BC, b,=AC c=AB, so that the 

interior of the triangle includes the vertex. The second lines u,y,w 

connecting BC , AC and AB respectively, form bangles B1(A,B, c,w) 

, B2(B,C,a,u), and  B3 (A,C, b,y) .   

 Theorem:  Each bangle lies entirely in the interior of � ABC. 

 Proof:  Each bangle must include the vertex. Therefore the 

second lines must be inside for at least part of their trajectory. 

Thus, if c, in connecting points A and B were to go outside it would 

have to return, cutting off another bangle with one of the sides. But 

this bangle, being external to the triangle, would not include the 

vertex, although all bangles must include the vertex. Q.E.D.  

 Theorem:  The union of the 3 bangles covers the whole 

interior of � ABC. 

 ClosureΔABC = B1∪B2 ∪B3  

 Proof:  The lines u and y intersect inside � ABC at a point U. 

The union of the bangles B2 and B3 exclude the triangle � BUC, 

formed by sides a y and w. This triangle is locally Euclidean. 

Therefore the line u between B and C cannot go inside this triangle 

because in a locally Euclidean domain, only the line a can connect 

B and C. Therefore u must go entirely outside � BUC, and the union 

of the 3 bangles will cover the whole interior.  
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  For the following discussion one may consult the two 

diagrams depicted above. Let A B C be the vertices of a triangle 

with sides u,v,w that include the vertex: V. Then there must be a 

second set of lines a,b,c, which also join, respectively, BC, AC, and 

AB. u and a must include the vertex, as must v and b , w and c. 

These must also intersect in 3 new points U,V, and W.   

The complete figure A,B,C, U,V,W, a,b,c, u,v,w will be called a "tri-

bi-angle". or tribangle.  

 Theorem:  If no two of the points A,B, and C are seperal, then 

they can be connected by 8 triangles.  

 Proof:  The 8 triangles are formed by the lines abc, abw, acy, 

bcu, awy, buw, cuy and uyw 

  I. 2 of these are strongly convex and include the vertex 

these are the ones formed by intersecting the lines  a,b,c at A,B,C, 

and the lines u,v,w at U,V and W 

  II. 3 of them are Euclidean. These are formed by the 

lines (i) a, b, w, (ii) a, c, v and (iii) b, c, u all intersecting at A, B, and 

C  

  III. 3 of them are self intersecting at the points U, V and 

W and terminate in the points A, B, C. 

 Suppose now that two of the vertices, A and B, are seperals on 

the same generator, g. (The situation is depicted in the second 

diagram.) In this case the other connections between AC and BC 

will be lines d and e that do not intersect. This is because of Axiom 

X, which guarantees the strong convexity of a bangle. There will be 

only two bangles defined by the pairs bd and ae.  
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   If all 3 vertices A, B and C are on the same generator, then neither 

triangles nor bangles are possible. However, if A,B and C are 

collinear, then, when making connections with the additional lines 

between AB, AC and BC, there will be one intersection point D of 

the bangles AB and BC. The third bangle AC will include the two 

others in its interior. A locally Euclidean triangle is  formed with 

vertices A, C, and D.  

Analytic Geometry on G 
 The most ‘natural’ coordinate system for G is that of polar 

coordinates from the vertex, with some generator g chosen at the 

abscissa from which to measure the angle q.  
 On the surface of the cone these are Euclidean coordinates, 

modulo π . However to get a better picture of what is happening it 

may be convenient to project the entire conic surface onto the 

Euclidean x,y plane, it being understood that when the angle at the 

vertex makes a full revolution of π , the angle at the origin the plane 

makes a revolution of 2π . Therefore, if one takes any polar 

equation describing a curve on the cone, and one replaces θ   by 2θ , 

this will give the corresponding equation for the projection on the 

x, y plane. As all the intersection properties are invariant under this 

projection, one has a model for a double-intersection geometry in 

the plane.  

 In particular, a line on the cone with equation  
aρ cosθ + ρbsin θ = c   

becomes  

� 

aρ cos 12θ +bρ sin 1
2θ = c (0 ≤θ < 2π )

aρ cos 12θ +bρ sin 1
2θ = −c (2π ≤θ < 4π ) . 



#21... 

 
Geodesics in General Relativity 

One of the interesting areas in which to look for applications 

is in those situations in General Relativity when there are two 

geodesics between points a and b in space-time. If light, gravity 

and causation all move along geodesics, what does this tell us 

about cause and effect between a and b, normally treated as based 

on a unique connection. Also, since the paradoxes of Special 

Relativity depend upon the proper time between events in space-

time, what happens when there are two candidates for proper time? 

These and other questions will be picked up in another paper.  
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Elliptic and Hyperbolic Geometries 

When the variants of these constructions in elliptic and 

hyperbolic spaces are made, distinction geometries result which are 

not difficult to describe.  

Pictures will be supplied at some future date. Let H signify 

the upper hemisphere of a sphere in 3-space, E the equator. Locate a 

point on the equator, which can be arbitrarily designated as the 

“origin”, O. A line L will be defined as two great circle arcs in H 

which cut E at the same angle α  to the left, at a distance d on each 

side of O. Since one is on the surface of a sphere, these must 

intersect at one point on H, (and one point in the “reverse 

complement” H’ of the lower hemisphere.) 
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Thus, the variant of our double intersection geometry in an 

elliptic space will have self-intersecting lines. Two “lines” L1 and 

L2 will intersect in 4 points. Thus, on the sphere, the double-

intersection property translates into a 6-point complex formed by 

two self-intersection points and 4 cross-intersection points of two 

lines.  
In a hyperbolic geometry G, one can have many parallels to a 

given line L passing through a given point P. The variant geometry 

in G will therefore have two kinds of line pairs L1 , L2 : those, 

which don’t intersect at all, and those which intersect in two points. 

These options are easily displayed in figures, which will be  

placed in this article at the author’s earliest convenience.  
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