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Introduction
An n-cimal is the representation of some real number to the base n. For

n=10 this is the customary decimal representation. If αααα is a positive real number

less than 1 , then αααα[n]  signifies the sequence of digits employed in its

representation, base n . In general this will be notated as :

(1) α[n]=nε1
α

nε2
α

nε3
α ....nεk

α ....

When the base is clear from the context we shall, in general, drop the

pre-subscript “n”. For all of the theorems in these papers, the specific value of

the base is not relevant.

The iterate collection , or iterate set   In
α

 of sequences associated with

the n-cimal representation of  αααα is obtained by shifts on the n-cimal point to the

right, throwing away the integer part and keeping the remainder. To be precise

:

 
In
α = {αk}, where
αk = αnk − [αnk ]

A patterned n-cimal αααα   relative to a fixed base n  is any real number

which is a limit point of its own iterate collection. If one of the iterates of αααα  is

a patterned n-cimal, then we will say that αααα  is effectively patterned relative to

n. This paper will investigate the properties of the boundary, or closure, of the

iterate collections of real numbers. In particular we will be looking at such

questions as :

(i) What are the conditions on  αααα  so that In
α

  is finite?

Countable? Uncountable
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(ii) What is the Lesbesgue measure of  In
α

 ?

(iii) When is  In
α

   a perfect set?

(iv) Properties of the iterate collections of rational numbers,

algebraic numbers and other interesting classes of numbers.

The property of being a patterned n-cimal is equivalent to this

following: Let Lj,k
α

 stand for the segment of the n-cimal representation of αααα    

from the jth to the kth digit. Then, for each such block, there are infinitely

many identical blocks Lmi ,mi +k− j
α

 at starting points {mi } in the n-cimal

representation. This follows immediately from the algorithm through which

In
α

   is derived and the fact that αααα is a limit point of the iterate collection.

Rational numbers may be considered effectively patterned n-cimals,

although the iterate collection is finite.  n-cimal representations of rational

numbers, to any base, become periodic after a certain  point.

The simplest example of an irrational patterned n-cimal ββββ     is the

following: Let n = 2. If h is any positive integer, write it as h = k2m , where m is

the exponent of 2 in h. Let Bh be a block of 1’s  of length m . If m = 0, then let

Bh = 0. The expression:

γ =.B1B2B3.......Bk ...
=.010110101110101101011110....

is a patterened n-cimal to the base 2.

Theorem I :
If there is even one block of the form B = λ1λ2....λk  ,

where the entries are taken from the elements of Zn = (0,1,2,,...n-1) and k is

finite , which does not appear anywhere in the n-cimal expansion of a positive

real number ββββ       , then the closure of the iterate set  In
β

   of  ββββ       is a set of

measure 0.
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Proof:
Let C(B) stand for the collection of all n-cimals which do contain

the block B somewhere along the line. Since B appears nowhere in , it will not

appear in any of the n-cimal expansions of the  numbers of

In
β

. It follows that C(B)∩ In
β = ∅ .

C(B) has positive measure: for example, the set of all n-cimals which

have B as head block has measure 1/nk+1 . In the same way the intersection of

C(B) with every sub-interval of [0,1] has positive measure. By the Lesbesgue

derivation theorem C(B) has measure 1. Since   C(B)∩ In
β = ∅   the

theorem follows.

Corollary :

If µ(In
β ) = 1 , then every finite block B of ordered sequences

of elements of Zn occurs in ββββ    infinitely many times.

Theorem II:

If ρε In
β then In

ρ ⊆ In
β

Proof:

If    ρρρρ     is in In
β

, then the closure of its iterate set coincides with that of ββββ  .

If  ρρρρ  is in In
β

  but not in In
β

, that is to say it is not an iterate of ββββ    , then any

block of digits occurring in  ρρρρ  must occur in  ββββ     infinitely many times. If

ψψψψ   in In
ρ

 is one of this sets limit points, then any block occurring in ψψψψ   must

also occur in    ρρρρ infinitely many times, therefore also in ββββ     infinitely many times

. It follows that ψψψψ   is also a limit point of In
β

, hence by definition an element

of In
β

 . Q.E.D.
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Theorem III ( Fundamental Theorem) :
If ββββ is any real number , then, for any base n , the set

In
β

 contains at least one patterned n-cimal.

Proof:

Let Pn
β

 be the set of all the limit points of In
β

 . We proceed by

indirect proof and assume that the theorem is false. Then in particular, b itself

is not patterned , and we have In
β ∩ Pn

β = ∅ . Choose an element

ρ1 ∈Pn
β .  By assumption ρρρρ1 will also not be patterned and one has, again

 In
ρ1 ∩ Pn

ρ1 = ∅ . Since  In
ρ1 ⊂ Pn

β
 ( every iterate of a limit point must

also be a limit point), one also has In
β ∩ In

ρ1 = ∅ . Proceeding in this

fashion we obtain a sequence of numbers, ρ1,ρ2,...,ρk ,....  , with

corresponding sets In
ρ j ∩ In

ρk = ∅ , In
ρ j ⊂ Pn

ρ j−1 ⊂ In
ρ j−1

.

Since In
β

 is compact, the above sequence of numbers converges to a non-

vacuous set of limit points, all in  Pn
β

. Every one of these limit points is

patterned or eventually patterned. QED

The following question is of interest: What are the general conditions

on an arbitrary real number αααα    , in base n representation, so that the closure of

its iterate set will be finite,  countable or uncountable?  A few examples:

If  αααα      is any rational number, then its iterate set to any base n

will be finite, therefore discrete. The converse is also true, as a finite iterate set

can only be created by an n-cimal that is periodic after a certain point, which

always converges to a rational number.

The following example to the base 2 has a countable iterate set:

λλλλ    = 0.101001000100001000001000000100000001.........
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The points on the boundary are .1 , .01 , .001 , .0001 , .......

There is no connection between a countable iterate set and

computability. Replace all the 1's in the above sequence with some non-

computable sequence of 1's and 2's, so that the expansion is to the base 3.

Then, no matter how this is done, the boundary set will consist of

.1 , .2 , .01 , .02 , .001 , .002 , ...........

Nor does a countable iterate set imply that all the numbers on the

boundary will be rational, as is seen  by the following example:

λλλλ'= .20212002121120002121121112000021211211121111200000......

( base 3)

Then the boundary will contain the number

m = .2121121112111121111121111112 ...... , as well as all of its iterates, and limit

points .2 , .12 , 112 , .1112 ,......0212 , .00212112 , .0002121121112 ..etc. The union of

all these sets will still be countable.

Definition:
Let Cn designate the set of all reals 0 <    αααα     < 1  , for which

the closure of the iterate set, base n, is countable.

Theorem IV:
Cn is a group under addition ( mod 1 ) : αααα  ,    ββββ εεεε    Cn implies

γγγγ    ====    αααα    ++++    ββββ     (mod 1) εεεε     Cn .

The result depends on the following lemma , ( which is stronger than the

theorem itself! ) :

Lemma 1 :
If A and B are two countable sets of real numbers with the

property that A , B  are both countable and compact, then A + B  is also

countable and compact. Here A+B is the "sum set" obtained by adding all

elements of A to all elements of B.

Proof:
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It is clear that A+B is countable, since this sum is simply a

countable collection of countable sets. We show that, under the given

conditions of countability and compactness, that A + B = A + B

Let ψψψψ  be a limit point of A+B. There therefore exists an infinite set of

numbers γ i ∈A + B, γ i = αi +βi ,αi ∈A,βi ∈B  converging to  ψψψψ .

Consider the two sets α = {αi},β = {βi} . Assume first that the set ββββ  is

finite. Then there must be at least one element ββββ* in b  , and an infinite subset αααα'

of αααα , such that a sequence of numbers of the form

γ i' = αi' +β*,αi'∈α'   converges to  ψψψψ   . By compactness, there is a

limit point    θθθθ    of αααα' , where θθθθ    is an element of A and θθθθ    + ββββ* =  ψψψψ  .

Next suppose that both αααα and    ββββ are infinite sets. There must exist a

subsequence of the sequence  γ i , γ i* = αi * +βi * , still converging to ψψψψ

, such that {αi*}  converges to a unique limit point ρ ∈A  . The

βi* = γ i *−αi *  must therefore also converge to a unique value µ ∈B

QED.

Proof of Theorem IV:  Let γγγγ    ====    αααα    ++++    ββββ  . The elements in the iterate set of g

can be expressed as  γ k = (α +β )nk − [(α +β )nk ]  . Then, either

(i) [αnk ]+ [βnk ] = [(α +β )nk ]  , or

(ii) [αnk ]+ [βnk ]−1 = [(α +β )nk ]

Divide the collection { γγγγk } into two classes C1 and C 2 ,  to both of which

we adjoin a 0 .  where the elements of  C1   obey condition (i), those of  C 2

obey condition (ii) . The elements of C1  are sums of iterates of αααα    ++++    ββββ  , therefore

C1 ⊂ A + B . By the lemma C1  is countable. C2 is also countable,

because the effect of the -1 is to shift the elements of C2  into the interval (0,1) ,

hence C2 ⊂ A + B−{1} , the expression representing, as usual, term by

term set addition.

Invoking the lemma once again, it follows that the set C1 + C2 is

countable. Because of the zero element in each set, this includes the set

C1∪C2 . The theorem follows.



#7...

DefinitionS :
By  En we shall mean the set of all real numbers ( mod 1)  whose

representation to the base n is either patterned or effectively patterned. 

By Jn we shall mean the set of all reals (mod 1) which generate an iterate

set with countable closure. There are several interesting theorems that relate

En to Jn  :

Theorem V:

If ρρρρ  is an irrational patterned n-cimal, then  In
ρ

 is a perfect set, and

conversely.

Proof:
Since ρρρρ     is patterned , it and everyone of its iterates will be limit

points of In
ρ

. Therefore all the points of In
ρ

 are limit points and, since it is

compact, it is perfect. Conversely, if In
ρ

 is perfect then every point is a limit

point, and        ρρρρ  is a patterned n-cimal.

Corollary :

If    ρρρρ  is irrational and effectively patterned, then In
ρ

 is uncountable  .

All perfect sets are uncountable. Otherwise stated, ρρρρ is not an element of Jn,

and in fact En ∩ Jn = Q , the set of rational numbers.

Observation: The corollary  is not true if we send n to ∞∞∞∞ . We

are then dealing with the space SI of all sequences of non-negative integers. If

K  = {kαααα    } is a set of elements of this space, then one says that a sequence λλλλ is a

limit point of K  under the following condition: One can form an ordered

subsequence of K , Kλ = kα1
,kα2

,.....kα j
,.....  such that, given any

integer N >0, the head block of λλλλ o f length N appears as the head-block of all

but a finite number of members of Kλλλλ . This definition is an obvious extension

of the identical property for n-cimals of finite base n.
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Let φφφφ (h) = m =  the highest exponent of 2 in h , and form the sequence

ΛΛΛΛ    =  φφφφ (1)  φφφφ (2)  φφφφ (3)  φφφφ (4) ...= 0102010301020104........

Then the closure of the iterate set of L in SI coincides with the iterate set

itself, which is obviously countable. 

Theorem VI:

If  In
ρ

  is countable, then all of its patterned n-cimals  are

rationals.

Proof:

By Theorem III every iterate set closure In
ρ

  has at least one

patterned n-cimal. These cannot be irrational, since by the above theorems the

iterate set closure would be uncountable.

We now have one way of characterizing the elements of Jn : Let γγγγ

be an element of Jn, In
γ

 its iterate set closure, and θθθθ     a patterned n-cimal in

In
γ

 . Then θθθθ         is a rational number.

Theorem VII:
If ρρρρ         is a patterned n-cimal, and r  any rational number,

then    ρρρρ    + r is effectively patterned, base n .

Proof:

Let γγγγ = ρρρρ + r . We will say that  (  ρρρρ , r  )  is a cascade   (mod n) if, in

the addition process modulo n, a "1" is carried down from infinity to some

finite position. In base n notation, if

ρρρρ    =  nε1
ρ

nε2
ρ

nε3
ρ ....nεk

ρ ....

r = nε1
r

nε2
r

nε3
r ....(nεh

r ....nε j
r ).... , ( where the segment in

parenthesis is repeated periodically) , and

γγγγ    =  nε1
γ

nε2
γ

nε3
γ ....nεk

γ ....    , then (  ρρρρ , r  )   is a cascading

pair if there is an K>0 , such that for all k >K , we have :
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nεk
γ =nεk

ρ+nεk
r +1 .

Suppose  ρρρρ patterned, r rational and ( ρρρρ,r ) non-cascading. Let the period

( after some point) of the representation of r ( base n)  be p . Let

L0,p+1
ρ

designate the block of the first p+1 digits in ρρρρ    . Since ρρρρ   is patterned

there must be infinitely many copies of this block scattered throughout ρρρρ . Call

the collection of all these blocks D ( L , p+1) . An infinite number of these

blocks must have an initial point qk such that the corresponding entry in r ,

namely nεqk

r
, will always be the same digit relative to the block

L0,p+1
ρ

which is being repeated periodically. Let us fix this digit, say "d", and

let Wd be the subset of the collection D( L, p+1) with this property.

Since (ρρρρ    ,r ) does not cascade, there exists an infinity of locations lj , for

which nεl j

γ =nεl
ρ+nεl j

r
. This in fact implies the stronger property that ,

provided ρρρρ     is irrational, ( the theorem otherwise reducing to a triviality), there

are  infinitely many locations lj' for which nεl j'

γ =nεl j'

ρ +nεl j'

r

Extend the first block of Wd to the first of these locations lj' . Designate

this extended first block as L1 .The sum of L1 with the corresponding  block in r

will contain no "1" carried into it from the

rest of γγγγ . There are therefore infinitely many blocks in Wd which can be

extended to blocks identical in content to L1 and which, when added to r will

produce identical blocks in γγγγ in which there is no 1 carried down from the

remainder of γγγγ .

Therefore, in the case of a non-cascading pair (ρρρρ    ,r ) , γγγγ  is effectively

patterned.

Now suppose that ( ρρρρ    , r ) is   cascading . Then , since a "1" is added

systematically to every pair-wise sum beyond a certain point, the contents of
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all blocks will be systematically altered in the same way. Therefore γγγγ will be

effectively patterned in this case as well. QED.

We are now in a position to characterize Jn more precisely :

Theorem VIII:
Let ρρρρ  be any positive real number. Every finite block ,

Lj,kρρρρ        of entries in ρρρρ     which is repeated infinitely often in the n-cimal

representation of    ρρρρ  , will appear as the head block of at least one of the

effectively patterned n-cimals in  In
ρ

Proof:
Assume that the block B, of length m , occurs infinitely often

in ρρρρ . Designate the set of all iterates of ρρρρ which have B as their head block. Its

closure T ⊂ In
ρ

 consists of precisely those elements with B as their head

block. Using  arguments resembling those of  Theorem III , we will show that

the closure of T contains at least one effectively patterned n-cimal.

Case I : Suppose that for all elements of   T  , the block B occurs

infinitely often. Then choose γγγγ1 on the boundary of T  and form the set T' of all

iterates of γγγγ1 which have B as their head block. Then clearly

T' ⊂ T, T' ∩T = ∅ . Proceeding in like manner one forms T'', T'''... etc. ,

as well as their closures As in Theorem III, the properties of compactness imply

a non-vacuous intersection of their closures, implying the existence of at least

one patterned n-cimal.

Case II : There exist elements µµµµ  in  T  in which B only occurs a finite

number of times. There must therefore be elements in the iterate set of µµµµ  which

have B as their head block and nowhere else in their n-cimal representation.

Since r has infinitely many copies of B in its n-cimal representation,

there must therefore be infinitely many iterates of ρρρρ with B occurring only as

their head block and nowhere else. Let G be the set of these. G is closed. If G'

is its set of limit points and contains no effectively patterned n-cimals, then
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G' ⊂ G . If G'  contains no effectively patterned n-cimals, then

G'∩G = ∅   Once again the process is iterated, forming G', G'', G'''. Take

their closures. Again, by compactness, the intersection of this series is non-

vacuous, and contains only effectively patterned n-cimals with head block B.

Corollary:
The elements of Jn have the following structure:

Every  block B  occurring an infinite number of times in  their

n-cimal representation  either:

(i) Develops longer and longer strings of periodic repetitions of

B  or:

(ii) is made up of a combination of a head block H, and a part B,

with longer and longer combinations of the form HB , HBB , HBBB ,....

occurring in the representation.

This is because the set of patterned n-cimals in the closure of Jn is the set

of rationals Q.

Patterned Sets, Sequences , n-cimals
We now let A = a0,a1,a2,......  be a sequence of non-negative

integers.

Definitions:
A section point set   S is a strictly increasing sequence of indices ,

starting from s0 = 0 , which, when applied to the sequence A, creates a

collection C = { Ck  } of finite segments of A , given by :

Ck = ask
,ask +1,......ask+1−1

An algorithm  L  is a sequence of non-negative  integers which index a

sequence of elements of C by concatenation. Thus, if

L = l0,ll ,....lk ,....  , then the derived sequence P = P( A,S, L  )  is

constructed from the other sequences as



#12...
P = Cl0

∆Cl1
∆Cl2

∆......  , where the ∆∆∆∆ symbol is a concatenation operator

that strings them together.

Example:

A = 0,1,2,3,.....,k,.....

S = 0,1,3,6,10.15,....n(n+1)/2 , ....

L = 010210321043210.......

Then C0 = (0) , C1 = (1,2) , C2 = (3,4,5), C3 = (6,7,8,9).... The derived

sequence is therefore

P = C0C1C0C2C1C0C3C2C1C0C4C3C2C1C0........

= 01203451206789345120...........

     A is the associated sequence to P. Summarizing:

A is the associated sequence

P is the derived sequence

S is the section point set

C is the segment set

L is the code or algorithm

n-cimal and iterate set have already been defined, Two definitions of a

patterned n-cimal have already been given:

(1) The representation to the base n of a real number    αααα  is said to

be patterned if     αααα is a limit point of its own iterate set.

(2) A sequence in general is said to be patterned if every finite

segment is reproduced elsewhere in the sequence.

An effectively patterned sequence in one which is patterned after a

certain index N, that is to say, which has a patterned iterate. Likewise for

effective periodicity.

We now give a 3rd definition of patterning which, for n-cimals, is

equivalent to (1) and (2) above:
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(3) P is a patterned sequence if and only if it is the derived

sequence from some associated sequence A , and section point S, in accordance

with the following algorithm:

L = 0102010301020104010201030102010501020103.........

that is to say     λλλλ    (n) = m where m is the exponent of 2 in n+1 .

We will now establish an important relationship between patterned

sequences and patterned n-cimals. Let the n-cimal representations of the real

numbers αααα and ββββ be designated as  α[n],β[n] . If we define sequence

addition as A(+) B = { ak+bk } = D , then , in general

(α +β )[n] ≠ α[n](+)β[n] . We also set  γγγγ    ====    αααα    ++++    ββββ            by ordinary real

addition and C =    γγγγ[n] . Then , in general C ≠≠≠≠ D  . In fact, D may not even be an

n-cimal since it may have entries larger than n-1 . However, we can prove the

following:

Theorem IX :
   If  αααα    ββββ    γγγγ A B C D are defined as above, then if D = A(+)B is a patterned

sequence, then    C     will be an effectively patterned n-cimal.

Proof :
Case I   : ak + bk < n for all k. Then C and D are identical

and C is patterned because D is.

Case II : There are only finitely many integers

k1,k2,...,ks  for which  ak + bk ≥≥≥≥ n . Then D and C will be identical after s

iterates. Since every iterate of D is patterned, it follows that C is patterned

after s, hence effectively patterned.

Case  III : There are infinitely many indices k for which

 ak + bk ≤≤≤≤ n-2 . Then let q designate the index of the  first element of D which is

less than or equal to n-2 . A "1" which is carried down to dq  from the rest of the

summation process for γγγγ    ====    αααα++++ββββ      will stop at this index and not produce

anything that will be carried down to that part of C from the cq  to the

beginning. Designate this block as C0 = c0c1c2 ....cq . The corresponding block
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in D = d0d1....dq  can be designated D0 . Since D is patterned D0 will be

repeated infinitely many times in D.  Call these copies D' D'' D''', D'''' .....

These correspond, indexwise in turn, to blocks C' C'' C''' C'''' etc., in C. Since cq

prevents anything from being carried into C0 , the final number in C' , C'' , etc.,

will also prevent anything from being carried into these blocks . Therefore

these blocks C' C'' and so on, will be identical copies of C0 . Since there are, by

hypothesis , infinitely many indices q with aq + bq  ≤≤≤≤ n-2 we can make C0 as

long as we wish, and therefore C will be patterned.

Case IV :  There are only finitely many dk ≤≤≤≤ n-2

(i) There are only finitely many dk > n-1. Then, after a

certain point, every dk will equal n-1 . In the process of converting this into C

by carrying, the infinite  sequence of n-1's will turn into an infinite string of

0's ( in the same way that, in base 10 , 0.9999999999 = 1.000000000000 ) ,

C will then represent a rational number, and is therefore certainly effectively

periodic and effectively patterned.

(ii) There are infinitely many dk > n-1 . Then

n-1 < ck ≤≤≤≤ 2n-2 for infinitely many ck  . In the process of converting D into C ,

one therefore carries a "1" from infinity down to some index q . Thus the effect

on each dk = ak + bk  between dq and infinity is to produce a corresponding

element ck = ak + bk + 1 ( modulo n ) . Since D is patterned, and since the

transformation ck = dk +1 ( modulo n) is a function of the value of dk and not

of its index, it follows that C will be patterned from the index q onwards. Thus

C is effectively patterned.

This completes the proof.

Corollary:
If A(+)B(+)C(+)....(+) M = N is a patterned sequence, then the

corresponding real number αααα    ++++    ββββ++++γγγγ    ++++............++++    µµµµ    ====    νννν   will be an effectively patterned

n-cimal. Proof by induction the above result.

Theorem X:
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If α[n]  is effectively patterned, then

(A) : (α + r)[n]  is effectively patterned, where r is rational

(B): (kα )[n]  is effectively patterned, where k is any integer

(C): (α m)[n]  is effectively patterned, m integer

(D) (r1α + r2 )[n]  is effectively patterned , r1 , r2 rational.

(B)  is a direct application of the corollary. (A) follows from (B) and (C) ,

because if r = s/t , then (tαααα +s) /t = αααα + r . Similarly, (D) follows from the

combination of (A) (B) and (C) . Therefore we need only prove (C).

Proof of (C) :   Consider the process of dividing αααα by some integer m

Let H(s)  be the head-block of length s in  the n-cimal representation of αααα .

Since αααα    [n] is patterned it contains  infinitely many copies of H(s) .

In the division process one brings down each occurence of H(s) preceded

by a certain remainder left over from the division made just before that

occurence. This remainder must be less than m . Thus there are only finitely

many possible remainders, and at least one of them r1 , must occur infinitely

ofter.  Therefore the expression  r1H  must be a dividend infinitely often. This

means that the block in (α m)[n]  corresponding to    r1H must occur

infinitely often.

The same reasoning is then applied to the block HKH, where K is the

filler block between two occurences of H in (α )[n] . This also appears

infinitely often, and when divided by m is preceded by a remainder, at least

one of which, say r2 , must occur infinitely often. In the same way, there will be

a remainder r3 preceding the division of the block (HKH)L(HKH), L being,

again, the filler between the occurences of HKH .

 One thus develops a sequence of remainders r1,r2,r3,.....  . Since

they are all less than m, there must be at least one of them, label it ζζζζ , which

occurs infinitely often in this sequence.
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It follows that (α m)[n]  will be patterned from the point at which

the division process first produces the remainder    ζζζζ . Hence it is effectively

patterned.

This completes the proof of Theorem X.

Corollary:
The property of being effectively patterned is independent of the base

n. The proof follows the same lines as the above.

Given real numbers αααα    ,,,,    ββββ     , both of which are patterned or effectively

patterned, it doesn't follow that γγγγ    ====    αααα++++ββββ      will be either patterned or

effectively patterned. To investigate those situations under which the sum will

produced another effectively patterned n-cimal, we define the pattern set   , M .

Definition:

Let α[n] = ε1
αε2

α .....εm
α ......  . The set of integers M = {Mk

} is called the pattern set for (α )[n]  if

0 = M0 < M1 <...Mj <...

ε j
α = ε j+Mk

α ,1≤ j ≤ Mk−1

The pattern set creates the division of the sequence α[n]  into the

collection of segments C = {Ck } . It is not unique. Indeed, any infinite

subsequence of a pattern set is also a pattern set!

Definition:

By (M)n we shall mean the collection of all n-cimals which have

M as a pattern set .  If M forms a pattern set for (α )[n]  , then we will say that

αααα      belongs  to   (M)n . When the base is obvious from the context, we will say,

simply, that  αααα     belongs  to M .

Theorem XI:
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If αααα,,,,    ββββ  both belong to M, then the sum g = a + b , will be

effectively patterned. For then the sequence (α )[n](+)(β )[n]  will have

the same pattern set and, by Theorem IX , γγγγ  will be effectively patterned.

Corollary:
If    αααα    ,,,,    ββββ,,,,    γγγγ    ,,,,    ....................,,,,    ωωωω   , all belong to the same pattern set, then the number

h = r0 + r1α + r2β+....rkω , where the r's are rationals, is effectively

patterned.

This corollary is not valid in the infinite case. Indeed, it is possible for

an infinite set of patterned n-cimals to have the property that every finite

subset of them all belong to the same pattern set, without there being any

pattern set for the entire collection, an infinite set of inclusions with vacuous

intersection.

One can also easily construct examples of 3 patterned n-cimals, any two

of which share a certain pattern set, without there being a common pattern set

for all three of them. For example,

α1:0, M1, M3, M5, M7,M9...
α2:0, M1, M2, M5, M6,M9, M10,...
α3:0, M2, M3, M6, M7,...

It is assumed that these are the "minimal" patterned sets to which these

numbers belong.

However, one has  this nice theorem:

Theorem XII:
Let K be an infinite set of patterned n-cimals, all of which belong

to the same pattern set M. Then all the members of the closure K  belong to

M. The theorem is all but self-evident, merely making the observation that

there are no special ambiguities between infinite strings of 0's and infinite

strings of the integer n-1 , owing to the repetitive character of the pattern

algorithm.
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Corollary:
The set of real numbers (M)n is a perfect set. By Theorem XII

(M)n is closed. Also, every element ρρρρ  of (M)n can clearly be obtained as the

limit point of other elements via, for example, a 'diagonalization'  on ρρρρ , which

alters a single digit of    ρρρρ     (and its reoccurences relative to the pattern set )  ) at a

time.

 Let P be a patterned sequence. If P has the property of having a section point

set which is an arithmetic progression, so that all segments Ck of new material

have the same length, then we will say that P is metric.

Theorem XIII:

Let αααα    ,,,,    ββββ   be metric patterned n-cimals, with generic

segment lengths mαααα ,  mββββ     . Then g = a + b is an effectively patterned

n-cimal.

We will prove this for general metric sequences, then appeal to the

fundamental theorem IX .

Since all segments of the patterning have equal length, the head segment

C0
α

 will reoccure at locations 0 , 2mαααα   ,4mαααα , ..... Likewise for the head block

of ββββ . It follows that the head segments of both a and b will initiate at locations

2Nmαααα mββββ   v, where N is any positive integer.

Likewise one can start with headblocks

C' 0
α = 2k mα ,C' 0

β = 2k mβ

By virtue of the pattern algorithm, these blocks will both reoccur at locations

2k+1Nmα ,2k+1Nmβ  respectively. Therefore both blocks are initiated

together at locations C' 0
α = 2k+1mαmβ .

 This shows that δ = α[n](+)β[n]  is patterned. Therefore

γ [n] = (α +β )[n]  is effecctively patterned.
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We will be employing an extension of the non-negative integers,

Z(n)ext .  This consists of all non-negative integers represented in the base n ,

as well as  all combinations of integers with an initial block of 0's . Thus, the

following elements are in Z(10)ext . 23; 0 ; 01 ; 00002560643 , etc...... In contexts

in which there is no ambiguity, we may refer to the elements of  Z(n)ext  simply

as "integers" . Otherwise they will be called 'extended integers' . The

expression " the (extended) integer N is missing from     αααα  ", means that N occurs

nowhere in its n-cimals sequence.

Example: Let ρρρρ  be a number which, expressed in base 10, lacks the

integer "001" , and which includes every integer which does not have 001 as a

subsequence. One way of doing this is to line up all integers which don't end

in 0 and which don't have the combination 001 , and string them all together.

If N is absent from ρρρρ , then all integers of the form HNK , where H and

K are arbitrary, will also be absent from ρρρρ . One can therefore say that N

generates a set of integers all missing from ρρρρ .

Likewise, if the integer N is present initially in ρρρρ , then disappears, we

can say that N is effectively absent from ρρρρ    . Let  Hρρρρ stand for the class of all

integers absent from    ρρρρ , and Hρρρρeff the class of all integers effective absent

from    ρρρρ . We are interested in identifying the generators of these sets, absent

integers not generated from any of their subsegments which

are also absent from ρρρρ .

There is a simple method for producing these generators. As all the

elements of Hρρρρ  and Hρρρρeff   are of finite length, there must exist a minimum

length L0 for all tbe elements of Hρρρρ and a minimum length J0 for the elements

of  Hρρρρeff  . The elements of minimal length must be generators. So we remove

from these sets all elements that contain them.

This leaves us with sets  Hρρρρ,,,,1   and Hρρρρeff,1' . These in turn have elements of

minimal length which generate sets that can be deleted. This method, which

bears some relation to the sieve of Erastothenes, can be continued until all of
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the generators have been identified. Since  Hρρρρeff includes Hρρρρ  the set of

generators of the former includes that of the latter.

The generators of Hρρρρ   will be called the list   , designated Lρρρρ  . Likewise

the generators of  will be called the effective list, Lρρρρeff .

Suppose first that Lρρρρeff is finite. Since Lρρρρ is included in  Lρρρρeff , it

follows that Lρρρρ is also finite. The converse also turns out to be true, although

the proof is far from trivial:

Theorem XIII :
If  Lρρρρ  is finite , then so is   Lρρρρeff  .

Proof :

Assume  Lρρρρ  finite , and that the integer K is in  Lρρρρeff   but not

 in   Lρρρρ  . Then K  occurs in the n-cimal representation of     ρρρρ    only a finite number

of times, l j .  The structure of    ρρρρ therefore looks like this

ρρρρ[n] = XKYKZKW........

For the sake of the argument, lets say that ZK was the final occurence of

K . We form an associated sequence I, by repeating ZK infinitely often:

I = XKYKZKZKZKZKZKZKZK.......

None of the subsequences of KZK are members of  Lρρρρ , yet any

subsequence S  of I which is also a  generator of Lρρρρ , must include KZK  as its

subsequence . That is S    εεεε    I , S a generator of Lρρρρ     implies KZK εεεε S . Therefore S

must include K . Therefore there must be an element of  Lρρρρ which contains at

least 2 copies of K .

Since the number of elements in Lρρρρ is finite, and since for any integer in

Lρρρρeff  there  is a member of  Lρρρρ with two copies of that integer, it follows that

the number of elements in Lρρρρeff  is also finite.

We next look at the case in which both Lρρρρeff  and   Lρρρρ  are infinite . We

distinguish two situations:

(i)   Lρρρρeff  -  Lρρρρ        ((((    ====    Lρ
eff ∩ (Lρ )C  )  is finite

(ii)  Lρρρρeff  -  Lρρρρ is infinite
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We postpone discussion of these cases until after a number of theorems relating

n-cimals with a finite list to patterned n-cimals have been presented. Recall

that the 'list' of the  n-cimal representation of a real number    ρρρρ     is the collection

of integers absent from this representation, and a patterened n-cimal is a real

number that is also a limit point of the iterate set of its n-cimal representation.

Definition:

The collection of all real numbers such that the list of its

n-cimal representations is vacuous will be designated as Ωn

Theorem XIV :
Every element of  Ωn  is patterned.

Proof:

Let H be a head segment of αααα of arbitrary length. Then if N is any

integer, the concatenated integer NH will be found somewhere in

αααα  . This is enough to show that αααα  is patterned.

Theorem XV:
Let µ(In

α )  designate the Lebesgue measure of the closure of the

iterate set of a . Then µµµµ = 1 if and only if  α ∈Ωn  . This is a restatement of

Theorem I.

Theorem XVI:
Let Lαααα be the list for  αααα  ( modulo n) . If ΓΓΓΓ  , the set of generators

of  Lαααα    is has a finite number of elements,  then αααα is effectively patterned.

Proof:

Denumbrate the members of ΓΓΓΓ as N1 < N2 .... < Nj . (Since these

integers can contain an initial string of 0's, the ordering is alphabetical) . Let m

be the maximum length of an integer in ΓΓΓΓ , and let

M > m .  Partition the n-cimal representation of    αααα into blocks of length M .

α[n] = B1B1B1........;
length(Bi ) = M
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The number of blocks with distinct content cannot exceed nM .

Therefore there is at least one block B* which is repeated an infinite number of

times in this representation. We therefore consider the first iterate that begins

with this block:

α* = B*........
Since B* is repeated infinitely many times, this iterate has a structure which may

be represented as B*AB*CB*D........

Designate as Q the sequence B*AB*A  . We will find this form in αααα*.

The reasoning is as follows: no subsequence of length m or less will be a

member of Lαααα , hence it contains no generators of Lαααα    .

Continuing this process, consider the form B*AB*CB*AB*C.

 This, too, has no generators of the list, and therefore this form will be

repeated in αααα∗∗∗∗ . Proceeding in this fashion, we see that there are arbitrarily

long segments of  αααα* which reoccur. Therefore αααα is effectively patterned.

Theorem XVII :
If a and b are reall numbers and Lα

eff = Lβ
eff

, then their iterate

sets have identical boundaries : Bα = In
α − In

α = In
β − In

β = Bβ , anc

conversely.

Proof:

If any of the elements of Zext is effectively absent from both αααα    and ββββ  ,

then it will , in the long run, be eliminated ftom their iterates,and not appear as

a subblock of any of their limit points.

Conversely, suppose Bαααα = Bββββ , and form the set: S = Lρ
ρεBα

I , that is to

say, the intersection of all lists ( not  effective lists )  of all the elements of

 Bαααα (= Bββββ ) . S will then be the effective list for both    αααα    and ββββ    . 1

                                    
1 In order that the theorem be strictly true we must specify that a number
like.34000000000 is not written as . 3399999999, since these have different effective lists ( 3
ultimately dissapears from the first sequence, whearas 3 and 4 ultimately disappear from
the second.)
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   By virtue of this theorem we are able to give a complete characterization of

Bαααα :

Corollary:
Bαααα    consists of precisely those reals ρρρρ , whose list includes Lααααeff .

Proof:

Note that any integer not generated by Lααααeff must end up as the

headblock of some limit point in Bαααα . This shows that the content of Ba

depends only on that of Lααααeff .

The following lemma is of interest because it is a simple redefinition of

the notion of a patterned sequence in terms of the properties of lists:

Lemma:
A sequence    σσσσ is patterned if and only if Lσσσσ = Lσσσσeff . Proof immediate

from the definitions of these terms

Corollary:
If αααα is patterned, ββββ has the property that Lαααα = Lββββeff , then ββββ is

effectively patterned and In
α = In

βk
 for some iterate    ββββk of ββββ .

 Proof:

Under the given hypothesis and from the lemma one has

Lα = Lα
eff = Lβ . Letting B once more be the set of limit points, we see that

In
α = Bα  , since for a patterned n-cimal, the border set coincides with the

closure of the iterate set. It therefore follows that In
α = Bβ .

Our next step is to show that In
β

 has only finitely many isolated

points. This implies the existence of a patterned iterate.

Let S = In
β − Bβ  be the collection of points that are not limit points,

i.e. the isolated points. If the corollary is false S can't be finite, for then only a

finite collection of iterates would fail to be limit points and ββββ  would be
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effectively patterned. However, since In
α

 is a perfect set, then Bββββ is also a

perfect set. S must then be an infinite discrete set between 0 and 1 whose

closure is a perfect set. which is impossible.

The corollary implies that an examination of the effective list  of an

number    αααα     will provide enough information to say whether or not αααα is

effectively patterned. This translartes into another corollary:

Corollary:
The collection Jeff = {Leff } of all effective lists, that is to say, all

sets of generators of extended integers that are eventually missing in some n-

cimal expansion , can be decomposed into sub-collections J = JN ∪ JP

For any set  M in JN , none of the numbers for which M is an effective list are

either patterned or effectively patterned. For any set D in JP  , all of the

numbers for which D is an effective list are effectively patterned ( or

patterned) . 

"Patterning" thereby translates into a structural condition on effective lists.

Our theorems show us that all finite effective lists are in JP . All of the

effective lists of JN are therefore infinite.

Some properties of JN and JP :     Since effectively patterned n-cimals are

determined by patterned lists, it follows that a real number    αααα  is effectively

patterned if and only if the cardinality of  Lα
eff − Lα  is finite. or there will

be some member of the iterate set which is patterned, and for this element the

list and the effective list coincide.

Similarly, let ββββ  be some number which is not effectively patterned, base

n, . Then Lβ
eff − Lβ  must have infinitely many members. This has several

consequences. The members of JP  can be either lists or effective lists of real

numbers, whearas the members of JN  cannot be lists of any real number.
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This implies a natural decomposition of the collection , J,  of all lists ,

into JP and a set J* of all lists which cannot also be effective lists.

Summarizing:

(i) If  Lα
eff − Lα  is finite, then  αααα  is effectively patterned or patterned

(ii) If  Lα
eff − Lα   is infinite, then  αααα  is neither effectively patterned

nor patterned.  In this case Lα
eff ⊂ JN & Lα ⊂ J* .

We establish an equivalence relation: α ≈ β ↔ In
α = In

β
 . It is

easy to check that this satisfies the 3 conditions of equivalence, Identity,

Commutativity and Transitivity. We have that

α ≈ β ↔ Lα
eff = Lβ

eff = Lα = Lβ  . Clearly any number is equivalent

to any of its n-cimal iterates. If αααα   is equivalent to ρρρρ     and ρρρρ     is not an iterate of

αααα     , then  ρ ∈In
α − In

α = Bα . It may also be the case that a is an iterate of r

. If this is not the case then we have

ρ ∈In
α − In

α = Bα &α ∈In
ρ − In

ρ = Bρ
Let ΣΣΣΣαααα be the equivalence class of which αααα  is a member. Clearly ΣΣΣΣαααα is

contained in  In
α

, though it may be properly contained. It is a simple matter to

construct the generators of  ΣΣΣΣαααα : they generate all of ΣΣΣΣαααα by iteration, yet none

of them iterate into the other . Although In
α

will usually contain a mixture of

patterned and unpatterned elements, all of the elements of ΣΣΣΣαααα   are patterned,

since αααα  is patterned and  they all have the same iterate set closure, which is a

perfect set which, by a previous theorem is always generated by a patterned n-

cimal. In fact we have shown that:

Theorem XVIII:
(i)  All the elements of ΣΣΣΣαααα  have the same list as αααα  .
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(ii) In
α

 consists of all n-cimals whose list includes Lαααα .

(iii) The structure of the generator set G(ΣΣΣΣαααα) is very complicated.

Examples:

I. Let µµµµ = 0.101001000100001000001........ , base 2 . Clearly the sequence is

not patterned. The list Lµµµµ consists of the integers 11 , 0101, 001001 , etc. The

effective list, in addition to all these elements of Lµµµµ , contains  every

subsegment of m except  "0" , and those with only a single 1 in them, such as 1,

010, 001 , 100, ... etc.

Clearly the effective list contains infinitely many integers beyond the

list.

II. Still working in base 2 , consider the number:

ττττ = 0.10110101110101101011110101101011101011010111110

This is evidently patterned, the simplest example of a non-rational patterned

binary. Its list , which coincides with its effective list, includes 00,101010,

11011, etc. Any binary 2-cimal whose list includes the elements of this list will

have integer subsegments all of which occur in    ττττ  infinitely often.

Definitions:
I.  Let us assume that the n-cimal α[n]  is patterned. We will say

that a is initiating   , if there is no patterned n-cimal β[n]  such that

α[n]   is one of its iterates. Likewise we will say that  is a kth iterate

patterned n-cimal   if there exists an initiating ββββ    such that αααα    ====    ββββk (base n) .

Now it is possible that there exists a number ββββk  for every k  ,  of which

αααα is a kth iterate; that is α[n] = (β[n]
k )k . One can then say that α[n]  is

infinitely back-extendible . Likewise, the phrases , " αααα is back extendible to k

places " , or " αααα is a  kth iterate" , are synonymous. One can also more

informally speak of a "pattern iterate", without specifying the number of

places between it and some initiating n-cimal .



#27...
II.   Let αααα  be a pattern iterate which is not infinitely back extendible. We

will say that a is braided if there are at least two distinct initiating patterned n-

cimals , ββββ  and γγγγ        , such that    αααα     is a patterned  iterate of each of them. The set    ΓΓΓΓ    

of initiating n-cimals for αααα     will be called its braids  . Since a is not infinitely

back-extendible the number of elements in ΓΓΓΓ      is finite, and may be called the

'braiding number' of αααα .

The choice of the term braid derives from the generic construction for

forming a pair of braids. Let

B = B1B2B3.......Bn..... be a sequence of integers, in the sense

previously defined. The construction of a braided pair    ββββ    ,,,,    γγγγ     proceeds in stages:

Stage 1:

ββββ : B0

γγγγ : B1

Extend ββββ  in the manner of the pattern index function, and transpose the

result down to γγγγ     :

Stage 2:

ββββ : B0B1B0

γγγγ : B1B1B0

Stage 3: Extend    γγγγ   in a similar fashion, then adjoin the result to ββββ    :

ββββ : B0B2B0 (B3(B1B2B0)

γγγγ : (B1B2B0)B3(B1B2B0)

Stage 4: Extend    ββββ in a similar fashion, then adjoin the result to γγγγ    :

ββββ : (B0B2B0 (B3(B1B2B0))B4(B0B2B0 (B3(B1B2B0))

γγγγ : (B1B2B0)B3(B1B2B0)B4(B0B2B0 (B3(B1B2B0))

And so forth. Since the initial blocks are different these braids are distinct. The

iteration number for    ββββ  is the length of block B0 , for γγγγ  it is the length of block

B1 . The sequence of indices after the intial block may be called the

"braided patterned index function", or simply the "braiding function" and is

given by:
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N       = 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18.......

 y(N) = 2  0  3  1  4  0  2  0  5     1     2    0    3    1    6    0    2 .........

The algorithm for the braiding function will be presented without

going into the details of the method of finite differences used to derive it:

Let M be any strictly monotonic sequence of members of Z+ , that is

positive integers in the usual sense.For simplicity we require that 1 be in M.

Let q  be any positive integer. We decompose q over M as follows:

Let m1 be the largest element of M which is less or equal to q. Set

k1 = [q/m1]

q1 = q - k1m1  .

Treating q1 in the same fashion we determine m2 , the largest element in

M which is less than or equal to q1. Likewise:

k2 = [q/m2]

q2 = q - k2m2  . Continue in this fashion until stage j at which we

find qj = 0 . We have thereby decomposed q as:

q = k1m1 + k2m2 +...kj−1mj−1

We may apply this process to any set M, the squares, factorials,

triangular numbers, etc.,  thereby forming a "basis representation" over M.

In particular, let M be the Fibonacci numbers indexed as follows:

f2 = 1 ,  f3 = 2 ,  f4 = 3 ,  ....f5 = 5 ,  f6 = 8 ,  ....

An expression for the braiding function ψψψψ     may be obtained by such a

decomposition of its even arguments over the Fibonacci series.

If n is even, we compute ψψψψ as follows:

(i) Decompose n/2 over the Fibonacci series in the manner

indicated. Since 2fk > fk+1  by  construction , the coefficients (kj )   of the

representation will all be zeroes or ones . Hence

n / 2 = f k1
+ f k2

+... f k j
 uniquely. Then    ψψψψ(n) is given by the lowest

index in the Fibonacci decomposition of n/2 .
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(ii) When n is odd the process is simpler

If both n and ψψψψ(n-1) are odd , then ψψψψ(n) = 1

If  n is odd and ψψψψ(n-1) are even , then ψψψψ(n) = 0

Comparing this with the first 17 places of the braided indexing sequence

given above, one sees that this algorithm gives the correct results. It is also

clear why the function begins with the argument "2" rather that "1" or "0" .

Because of the generic character of the braiding process one sees that a pair of

patterned braids may be derived from any associated function.

How does this relate to the boundary properties of iterate sets? If ββββ    and

γγγγ        are braids of the same patterned n-cimal αααα  , one has clearly:

In
β ⊃ In

α ; In
γ ⊃ In

α

In
α = In

β = In
γ

It follows that both ββββ and γγγγ    are limit points of Iαααα . If ββββ and γγγγ are both

initiating patterned n-cimals , and equivalent in the sense of having identical

iterate set closures, one can ask if they must be braids of some common iterate αααα

? One quickly sees that this is not necessarily the case: equivalence depends

only upon the loose condition that they have the same list L .

A final theorem concerning the structure of ΩΩΩΩn , all of whose elements

are infinitely back-extendible.

Theorem XIX :
µµµµ    ( ΩΩΩΩn ) = 1

That is to say, almost all real numbers are, to any base n, patterned n-

cimals with vacuous list.

Arrange  the elements of Zext by alphabetical ordering as

N1 , N2 ,...Nk . Let λλλλk be some patterned n-cimal whose list contains only the

integer Nk . Then the elements of Iλ k
 will be precisely those real numbers
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with lists that include Nk . By a basic theorem of ergodic theory, and also by

the opening theorems of this paper, one has

 

µ(Iλ k
) = 0

µ( Iλ k
1

∞
U ) = 0

Ωn = I − Iλ k
1

∞
U

∴µ(Ωn ) = 1
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