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 Introduction 
 The group   is the  most basic entity  studied in the field of 

Abstract Algebra. Historically, the group notion arose from the 

investigation of symmetry transformations in Plane and Solid 

Geometry. It was then discovered by the brilliant young 

mathematician Evariste Galois, that the symmetric groups, or 

groups of permutations , could be applied to the solution of 

outstanding problems in the theory of algebraic equations. The so-

called Galois Group  has become the most important single tool in 

Number Theory.  

 The discovery  of matrices by Cayley led to the  theory of 

matrix representations of groups; this has many applications in 

modern physics. Sophus Lie discovered the great usefulness of 

continuous groups, now known as Lie Groups, and their associated 

Lie Algebras, to the solution of Differential Equations.  

 Emmy Noether, the most famous woman mathematician, 

demonstrated the close connection, indeed the equivalence, of 

groups of symmetries and the conservation laws of physics.  
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 Dirac's equation for the electron, his theory of magnetic 

monopoles, the Standard Model of the electroweak force, and 

grand unified theories, all come directly out of the insights 

provided by Emmy Noether. 

 The important concept of the fundamental group of a 

topological surface  was invented  by Henri Poincaré, for which 

reason it is also known as the Poincaré group. This notion allows 

one to understand topological shapes in spaces of many 

dimensions. To give one example of a major application to modern 

physics, the Temperley-Lieb Algebra, encountered in the Ising 

Models of Statistical Mechanics, is derived from the Braid Group, a 

form of the Poincaré group that is central to Knot Theory.  

Rotation Groups 
 We assume a basic background in group theory . Only certain 

Lie groups will be treated in this seminar. Generally speaking, 

these can be interpreted as generalizations of rotations in spaces of 

2, 3 or 4 dimensions, parametrized by real or complex coordinates.  

 Although we will be speaking mostly about orthogonal 

groups, certain common Lie groups will also be defined now. 

 All Lie Groups of interest are groups of n- matrices with real 

or complex entries. There do exist Lie groups which cannot be 

represented as groups of matrices, but, at least for the purposes of 

physics, they can be dismissed as pathologies. 

 A matrix is a transformation on some n-dimension space. A 

Lie Group is a collection,  Mk , of matrices acting on an n-manifold 

En , such that Mk   is itself a continous  k-dimensional manifold in 
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its entries. This is best explained by examples. Let R2  signify the 

ordinary Cartesian plane in 2-dimensions x, y.  

 A non-singular   linear transformation A of R2 sends each 

vector of the form v = (x,y) , into a vector w = (a1x +b1y, a2x + b2y) , 

where the coefficients are linearly independent. We can write A in 

the form 

A =
a1 b1
a2 b2
 
 

 
 ; Av = w; det A = a1b2 − a2b1 ≠ 0  

 Since there are no restrictions on the entries in A, one can 

treat A as a continuous function of 4 variables. The collection of all 

matrices satisfying the above relationship can be parametrized as a 

subspace of R4 subject only to the condition that detA  not be equal 

to 0. This turns out to be all of 4-space, minus the hypersurface 
defined by the equation  a1b2 − a2b1 = 0  

 The name given to this collection of matrices is the General 

Linear Group  over the real numbers,  of order 2 , or GL(R, 2) . For 

an n-dimensional space of real coordinates, one can similarly 

define GL(R, n) . Observe that this is always a group. The product 

of 2 matrices of GL(R,n) is also a member of GL(R,n) ; each element 

has an inverse; the identity is the matrix with 1's on the diagonal 

and 0's everywhere else, and since matrix multiplication is 

automatically associative, it obeys the associative law. 

Multiplication in GL(R,n) is not commutative, hence we say that it 

is a "non-Abelian" group. 

 If rather than  detA �  0 , one stipulates stronger condition detA 

= 1 , the result is  another Lie  group knowna as the  Special Linear 

Group  , or SL(R,2) ( more generally SL(R,n) ) . Note that, although 
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the manifold of entry coefficients of SL (R,2) is a surface in R4 , it is 

actually a 3-dimensional manifold, because the condition 
a1b2 − a2b1 =1enables us to define any one of the entries in terms 

of the other 3. For example, a1 =
1+ a2b1
b2

. As the determinant is 

this case is a quadratic form, the "shape" of this manifold  in 4-

space may be understood as a kind of "hyperquadric surface" 

 The coefficients need not be real. Transformations over 

complex spaces, such as the complex plane, will normally have 

complex numbers as entries. One then speaks of GL(C,2) , etc. 

Observe that GL(R,2) is a subgroup in GL(C,2) 

 The collection of 2-matrices A such that detA = 0, also forms a 

continuous 3-manifold in 4-space, but it is no longer a group. 

Elements of this collection  do not have inverses.  

Orthogonal and Unitary Matrices 
 Rotations and Reflections occupy a special place in the theory 

of Lie Groups. A rotation in n-space is a transformation that 

preserves the lengths of all vectors emanating from the origin. It 

can be called an isometry, or an orthogonal transformation.  

 Length in a real n-dimensional space is defined by the metric, 

the square root of a quadratic form in the dimensional variables. In 

the case of a general Hilbert Space the metric is derived from the 

norm. In the case of a general Riemannian Space, the metric is 

derived from something called the "connection" 

 The set of orthogonal matrices on 2-space is signified as O(2) .  
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If v =(x,y) is a generic vector in R2 , the square of the length of this 

vector is defined as D =x2 + y2 . An orthogonal matrix is a linear 

transformation of v that preserves the value of D.  

 Recall these basic properties of matrices: 

 
(AB)T = BTAT

v = x
y

 
 
 
 ;vT = (x, y)

vTv = (x, y) xy
 
 
 
 = x 2 + y2

(Av)T = vTAT

 

 Using these formulae one readily derives the defining 

condition  for orthogonal matrices. Suppose O is an orthogonal 

matrix and  Ov = w  . Then (Ov)T = wT = vTOT  . Multiplying 

these together one sees that wTw = vTOTOv . Therefore, if  

OTO = I = 1 0
0 1
 
 

 
 , the identity matrix, then 

wTw = vTv = x2 + y2 = D  

 This sufficient condition can also be shown to be a necessary 

condition. Therefore , O is an orthogonal matrix if and only if 

OTO = I = 1 0
0 1
 
 

 
  

 From our experience of working with rotations in the plane, 

we all know that they depend on a single variable, the included 

angle   between a vector and the x-axis. Therefore, as a manifold, 

the Orthogonal Group  in the plane  is a 1-dimensional subspace of 

4-dimensional space  !  
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 The Orthogonal Group actually includes both rotations and 

reflections. A proper  rotation is one for which detO = +1 . A 

rotation combined with a reflection has the property that detO = -1 . 

The collection of all proper rotations in the place is called the 

Special Orthogonal Group   of order 2, written SO(2)  .  

 Remembering our  analytic geometry, we  can notate a typical 

element of SO(2) as  

A = cosθ sin θ
− sin θ cosθ
 
 

 
  

Labelling the coordinates of real 4-space as x,y,z,w the "equation" 

defining this curve  in 4-space is x= w , y = -z , x2 +y2 = 1 .  

 Looking as SO(3), SO(4), ... SO(n) , one discovers that the 

number of dimensions of the orthogonal group grows as a function 

of n. Observe that the embedding space of the coefficients of an  

n-by-n matrix will have n2 dimensions . Then it is not difficult to 

show that: 

  Theorem: The dimension of SO(n) as a manifold in n2 

dimensional space is m = n(n+1)/2  .  

 For our purposes we need only know that 

  SO(2) is 1-dimensional 

  SO(3) is 3 dimensional 

  SO(4) is 6-dimensional.  

 In particular, many of the sometimes confusing, yet always 

fascinating properties of spinors, quaternions and Pauli matrices 

that we will be discussing come from the fact that: 

 The number of free variables of the proper rotations in K= R3 is 

equal to the dimension of K  itself!  
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 3-Space is the only Cartesian vector space  with real 

coordinates for which this is true. It is this fact that makes it 

possible to have a vector product, which, as we know, is the most 

fundamental algebraic operation in   Electromagnetism.  

 

Complex Spaces 
 At some time in the 19th Century people began looking at 

spaces parametrized by complex numbers. The so-called Gauss-

Argand-Wessel Diagram for the complex plane dates from 1797. 

 This is something of a private joke. In my review of Roger 

Penrose's book, "The Road to Reality", to be published by The 

Mathematical Intelligencer this summer, I make fun of Penrose's 

excessive pedantry in insisting on the priority of the otherwise 

unknown Caspar Wessel for the invention of he "complex plane". 

Not only did he not understand its larger implications, his paper 

wasn't even published until 1897  !  

 The Complex Plane   C , or C1 , is a way of assigning 

coordinates to ordinary plane geometry, such that the x coordinate 

is real, the  y coordinate pure imaginary, and the entire location 

defined by a complex number z = x+iy. If z1 , z2 are complex 

numbers, one can also write them as  
z1 = ρ1eiθ1 ;z2 = ρ2eiθ2
z3 = z1z2 = ρ1eiθ1ρ2eiθ2 = ρ1ρ2ei(θ1+θ2)  

 The product of two complex numbers can be interpreted as a 

linear transformation in which the moduli  are multiplied and the 

arguments added. In particular, if  z1 is located on the  unit circle, 

then the product of z2 by z1 is a clock-wise   rotation   in the plane 
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in the amount of the argument  θ1 of z1 . It is therefore natural to 

identify  the complex numbers u = cosθ   +isinθ  of unit length with 

rotations. These can also be looked upon as the collection of  

matrices of order 1   , (u) . This  is known as  SU(1) , the "Special 

Unitary Lie Group of Order 1". Observe that the elements u of 

SU(1) can be written in the form u = eiθ = cosθ + isin θ   

 We have thus proven our first theorem: 

 Theorem: 

  SU(1) is isomorphic to SO(2) :  SU(1) ≅ SO(2)  

 Because multiplication by a complex number produces a 

clockwise rotation, the specific isomorphism connecting these two 

groups is e−iθ ↔ cosθ sin θ
−sin θ cosθ
 
 

 
  

 It was primarily in the field of Projective Geometry that 

people began looking at spaces of nth order vectors,  whose 

coordinates are complex numbers. The person  most responsible for 

making this the standard way of studying projective spaces was the 

great mathematician and teacher  Felix Klein. Klein deserves 

special mention, because it was the mathematicians  who went to 

Europe to study with him who established  the American tradition 

in mathematics.  

The Unitary and Special Unitary Lie 
Algebras of Order n.  

 I will present their defining condition first, then explain the 

motivation behind  it.  

 (1) A Matrix U of order n is Unitary if  
U *UT = In .  
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The asterisk signifies "U-conjugate", the matrix obtained by 

replacing all of its entries by their complex conjugates. This can 

written in several equivalent ways. Reviewing the basic properties 

of matrices : Let A,B be non-singular matrices of order n. Then : 
(AB)* = A*B*
(AB)T = BTAT
(AB)−1 = B−1A−1
(AT )−1 = (A−1)T
∴((AB)T )−1 = (AT )−1(BT )−1

 

It follows that the defining condition for a unitary matrix can be 

variously written as 

 
U *UT =UTU* =UUT* = In
UT=U −1*;(UT )−1 = U *  

and so forth.  

 

 A Special  unitary matrix V has the additional property that  
((V )) = detV = +1  

 Special unitary matrices differ from ordinary unitary matrices 

in the following respect:  the determinant of an ordinary unitary 

matrix can be any complex number of modulus 1, such as   i, -i , (-

1+i� 3)/ 2), etc.. 

SU(2) 
 Unitary matrices and the closely related unitary operators 

occur naturally in quantum theory. The time evolution of a 

Schrodinger wave function is given by  

 
φ(t ) = e−2πi hHφ(0) =Uφ (0)  
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where U is a unitary operator. In the Heisenberg formulation these 

are in fact matrices.  

 Among all the Lie groups of unitary and special unitary 

matrices employed in physics, SU(2) has a unique place. We will 

show that : 

 (1) SU(2) is isomorphic to the quaternion group Q 

 (2) U(2) works as a group over spinors as  O(3) does over  3-

space 
 (3) The Pauli matrices σn ,n = 1,2,3 are elements of SU(2) .  

 (4) SU(2) is a double cover   for SO(3) . This means that for 

every matrix A in SO(3) , there are two matrices X, Y in SU(2) , and 

if  

X1 ,Y1 correspond to A, X2 ,Y2 to B, then the products X1X2  , and 

Y1Y2 , correspond to C = AB .  

 (5) Each element E of SU(2) corresponds to a point p  on the 3-

dimensional surface of the unit sphere in 4-dimensional space. 

DetE=|p|=1. If E and F correspond to p and q , then EF =G 

corresponds to  the product of p and q considered as quaternions.  

  Quaternions 
 It is claimed that Sir William Hamilton was standing on a 

bridge in Dublin staring over the Liffey river, when the idea of 

quaternions hit him in the head with the  force of a shillalegh 

being thrown from an unknown source! Whatever the truth of the 

legend he spent many years in an attempt to recast all of Physics in 

the language of quaternions. This was not successful, and the 

subject was abandoned after his death . 
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 With the discovery of quantum spin and other generalized 

rotation groups, quaternions were re-introduced into physics in the 

form of the Lie Group SU(2). This has been very successful. 

 A quaternion   q is a vector in (real) 4-space, written in the 

form  
q = α0 + iα1 + jα2 + kα3  

The letters i, j and k stand for square roots of -1, which relate under 

multiplication in the following manner: 

 
i2 = j 2 = k2 = −1
ij = − ji = k; jk = −kj = i;ki = −ik = j  

 Note the similarity with the vector cross product and with the 

curl. Large books have been written about the properties  of 

quaternions :  we present just one of them:  

 If Q = A2 + B2 +C2 + D2 is a quadratic form in 4 variables, 

then it can be factored "over" the quaternions as 
Q = (A + iB + jC + kD)(A − iB − jC − kD)  

We now examine their close relationship  to Pauli matrices. 

 The Pauli matrices are defined by   

σ1 = 0 1
1 0
 
 

 
 ;σ2 = 0 −i

i 0
 
 

 
 ;σ3 = 1 0

0 −1
 
 

 
 ;  

We modify them very slightly, multiplying them by -i . Define 

γ 1 = −i 0 1
1 0
 
 

 
 =

0 −i
−i 0
 
 

 
 ;γ 2 = −i 0 −i

i 0
 
 

 
 =

0 −1
1 0
 
 

 
 ;γ3 = −i 1 0

0 −1
 
 

 
 =

−i 0
0 i

 
 

 
 ;

 

Then a simple calculation shows that  
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γ 1γ1 = −1 0
0 −1

 
 

 
 = γ 2γ 2 = γ 3γ 3 = −I2

γ 1γ 2 = −γ 2γ1 = γ 3....
 

These are exactly the defining equations for quaternions.  

 

Unitary matrices as rotations 
 Let C

n 

signify an n-dimension space with complex 

coordinates.  

 Consider the metric quadratic form defined by  
x = (x1, x2 ,... xn )
D(x) = x12 + x22 +...+xn2  

 Irrespective of whether the coordinates are real or complex, 

the preceding arguments can be used to show that the shape of this 

form is invariant under any linear transformation of the vector x by 

an  orthogonal matrix O:   D(O(x)) = D(x)  

 Furthermore : The metric quadratic form defined by 
x = (x1, x2 ,... xn )
D*(x) = (x12 )* +(x22 )* +...+(xn2 )*  

is also preserved by orthogonal rotations.   This is because the 

application of "conjugation" does not reverse the order of the terms 

in a matrix product : (OOT )* = O*OT* = I . In this form the 

result is obvious. However, note that a vector is also a matrix. If we 

apply both conjugation and transposition to the product of a vector 

with a matrix, we get: (Ov)T* = (O* v*)T = vT *OT*  

 Now consider the metric form : 
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x = (x1, x2 ,... xn )
Δ(x ) = x1x1 * +x2x2 *+...+xnxn *  

 Although the coordinates are complex numbers, the metric 

form is a real number!  It is the simplest form of  a Kähler metric, 

and a manifold with this metric is called a Kähler manifold. It is 

the natural n-dimensional extension of the modulus in C, the  

complex plane. 

 What class of  matrices preserves the Kähler metric?  

 Let  

v = (x1, x2 ,... xn );vT =
x1
....
xn

 

 
 

 

 
 

Δ(x ) = x1x1 * +x2x2 *+...+xnxn* = vvT*
 

 We are  looking for linear transformations U that preserve 

this form. What is needed is: 
vT*v = (Uv)T*(Uv)
= vT*UT*Uv  

 Looking at this equation one concludes: 
∴UT*U = In  

 We have shown that this condition is sufficient. It can also be 

shown to be necessary.  

 Therefore: 

  The Lie group of Unitary Matrices of order n preserve the 

metric on an n-dimensional Kähler manifold.  

  Likewise: 

 The Lie group of Special Unitary Matrices of order n preserve 

the  metric and the gauge on a Kähler manifold. 
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Complex Manifolds, Orthogonal Matrices 
and Spinors. 

 For the present discussion we will restrict our attention to 

complex 3-space, C3 . One isn't obliged to use a Kahler metric on a 

complex space. One can study the properties of the customary 

Euclidean metric D,  
x = (x1, x2 ,... xn )
D(x) = x12 + x22 +...+xn2  

where the x's are all complex numbers. In this case the metric 

preserving set of linear transformations will be the usual 

orthogonal group. Such manifolds are called "Euclidean" 

 It turns out that this Euclidean manifold relates to a Kähler 

manifold of lower dimension through the intermediary 

construction of something known as a Spinor manifold. 

 Observe that, as a Euclidean manifold,  C3 admits a new class 

of vectors, those of 0 length. These are known  known as isotropic 

vectors.  

 An isotropic vector x   has the property that 
x = (x1, x2 , x3 )
D(x) = x12 + x22 + x32 = 0  

  Apart from the trivial case of 0 vector, it is clear than at least 

one of the components must be a complex number. Let the 

subspace of isotropic vectors of C3 be designated IS3 Each isotropic 

vector element of   IS3  can be associated with a pair of vectors 
ξ = ±(ξ0 ,ξ1)  in a Kähler 2-manifold known as a spinor manifold   

of order 2  : Sp(2) , The formal relationship of "isotropic vectors" to 

"spinors" is given by: 
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x1 = ξ02 − ξ12
x2 = i(ξ02 + ξ12 )
x3 = −2ξ0ξ1

 

 The spinor components ξ = ±(ξ0 ,ξ1)  are arbitrary real or 

complex numbers. A simple calculation shows that the Euclidean 

metric form on an isotropic vector is identically zero on Sp(2) under 

the above set of equations :  
D = x12 + x22 + x32 = (ξ02 − ξ12 )2 − (ξ02 + ξ12 )2
+4(ξ0ξ1 )2 ≡ 0

 

 What this shows is that every vectorξ   of Sp(2) can be mapped 

onto a vector of IS3 , and that every vector x of IS3  corresponds to 

two vectors of Sp(2),   ± ξ    .  

 However, something very interesting when one applies the 

Kähler metric   to IS3 ! :  

 
Δ = x1x1* + x2x2* + x3x3* = (ξ02 − ξ12 )((ξ02 )* −(ξ12 )*)
+i(ξ02 + ξ12 )(−i((ξ02 )* +(ξ12 )*)+ 4(ξ0ξ1)((ξ0ξ1 )*
= (ξ02 )(ξ02 )* +(ξ12 )(ξ12 )*−(ξ12 )(ξ02 )* −(ξ12 )*(ξ02 )
+(ξ02 )(ξ02 )* +(ξ12 )(ξ12 )* +(ξ12 )(ξ02 )* +(ξ12 )*(ξ02 )
+4ξ0ξ0 * ξ1ξ1 *
= 2[(ξ02 )(ξ02 )*+(ξ12 )(ξ12 )*]+ 4ξ0ξ0 *ξ1ξ1 *
= 2(ξ0ξ0 * +ξ1ξ1*)2 (!!)

 

 The Kähler metric form  on IS3 is transformed into twice the 

square of the Kähler  metric on Sp(2) . This means that the 

isometries of IS3 are also the isometries of Sp(2), namely the 

unitary matrices , or SU(2).  

 We have arrived at  the crucial step. When one goes from the  

Kähler  Metric on IS(3) to the Euclidean Metric on IS3 , one thereby 
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induces a natural mapping from the Special Unitary Group SU(2) 

onto the  Euclidean Group of Special Orthogonal Matrices SO(3) .  

An orthogonal rotation in IS3 translates into a unitary rotation in 

Sp(2).  

 This may be easier to understand when put into proper 

notation:   
Sp(2) − − − > IS3
↓ ↓
Δ − − − > D
↓ ↓

U(2) − − − > O(3)

 

 Let ξ  be a spinor . It corresponds to a unique isotropic vector 

x. If x is translated into x' by means of an orthogonal 

transformation 

x'  = Ax, where A is a member of O(3) , then the spinors 

correspondings to x' , namely ± ξ  ' , will be derived from   by means 

of a unitary transformation U ,  ± ξ  '= ±Uξ  . A similar argument 

applies to the Special Orthogonal Group and the Special Unitary 

Group In the next section we will present the explicit relationship 

between the  matrices of spatial rotations SO(3) and the matrices of 

SU(2).   

SU(2), R4, Quaternions  , and SO(3) 
 From the conditions which defines a member of the group 

SU(2), one can explicitely write down the form of each of its 4 

entries. These conditions are: 

(1)UUT* = 1 0
0 1
 
 

 
 

(2)detU = +1
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 Recall that, owing to the peculiar nature of multiplication of a 

matrix by a scalar, that det(U) =det(-U), when U is of even order!  

 The details of the calculation can be left as an exercise. One 

finds that a typical element of SU(2) can be written as: 

V = α0 − iα3 −α2 − iα1
α2 − iα1 α0 + iα3
 
 

 
 

α02 +α12 +α22 +α32 =1
 

 The a's are all real numbers. Let σ1,σ2,σ3  signify the Pauli 

matrices. Then it is a simple exercise to show that V can be written 

in the form: 
V = α0 I2 − i(α1σ1 +α2σ2 +α3σ3)
= α0I2 +Q  

 We recognize right away the form of a quaternion, as 

expressed in terms of the  Pauli matrices. The imaginary part Q is 

what is called a pure quaternion, analogous to a pure imaginary in 

complex variables. Even as V is an element of SU(2), so Q is an 

element in su(2), the Lie Algebra associated with SU(2). Lie 

Algebras can be the subject of another talk. The function that 

carries elements V and -V onto an element R of SO(3) depends on 

the variables α0 , .... . This can be written out explicitely. If 

V = ± α0 − iα3 −α2 − iα1
α2 − iα1 α0 + iα3
 
 

 
 

α02 +α12 +α22 +α32 =1
 

then 

R = ±
α02 +α12 −α22 −α32 2(α1α2 −α0α3 ) 2(α1α3 +α0α2 )
2(α1α2 +α0α3 ) α02 −α12 +α22 −α32 2(α2α3 −α0α1)
2(α1α3 −α0α2 ) 2(α 2α3 +α0α1) α02 −α12 −α22 +α32

 

 
 

 

 
 

 When α0 = 0,   traceR = -1 and this scheme must be modified.  
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Details may be found in "Angular Momentum in Quantum 

Physics", L.C. Biedenham & J.D. Louck , "Encyclopedia of 

Mathematics, Addision Wesley 1981 . This book is in the Wesleyan 

Science Library.  

 Finally, because  a quaternion of unit length can be expressed 

as a function of four variables connected by a Euclidean metric 

form, one can show that the topology of SO(3), considered as a 

continous topological manifold, is identical to that of the 3-Sphere 

in 4-dimensional real space, with polar opposite points identified, 

that is to say, the Projective Space of Order 3, or P3 .  
❆❆❆❆❆❆❆❆❆❆❆❆  
❆❆❆❆❆❆❆❆❆❆❆❆  
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