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Note: 

 Before delivering this lecture I sent copies around to friends and 

colleagues for suggestions. The following is excerpted from the reply 

sent by a friend, a physicist living in the neighborhood of Bard College: 

“Roy: Excellent exposition of the math…. Alas you have botched 

the history,,, Despite your efforts to the contrary, Dirac did visit Bard 

(twice)”.. 

 (Comment: In the late 70’s and early 80’s I sent letters to socially 

designated distinguished intellectuals, including Isaac Bashevis Singer, 

Paul Dirac and Steven Smale, encouraging them to turn down invitations 

to speak from Bard College because it was a bad place. My letter may have 

had a contributing effect on Bashevis Singer’s decision to turn down the 

College’s invitation. Informants in the Physics Department let me know 

that Dirac had taken my letter seriously (We’d met briefly at the Einstein 

Centennial Symposium in 1979), and made his own investigation. 

Evidently he concluded (correctly) that academic fights of parochial local 

yokels were not a strong enough inducement to deprive the entire Hudson 

Valley region (that portion of it not banned from the Bard campus), of his 

presence and insight.  

A similar letter to Leonard Bernstein helped lift his spirits after a 

particularly stupid article on him by Leon Botstein appeared in Harper’s. 

 ( The tragedy of Leonard Bernstein, May 1983 )  I know this 

because he called me up to thank me.   ) 

“ … we had some interesting conversations on the origins of 

Spinors and Pauli’s role. His memory of 50-year old events was striking 

(as he couldn’t remember lunch) .  He put his introduction to Cayley 
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elsewhere ( in Engineering School at Bristol) and for other reasons 

(pragmatic problem solving –it turns out that Electrical Engineers, 

particularly English, actually read Heaviside rather than Gibbs, and 

linearizing (diagonalizing) expressions with circuit theory variables 

(‘complex impedance’ and such) was standard procedure.)  

 He slept through Pauli’s lecture at Cambridge – he already had 

the spinors in hand.. He didn’t worry about the classical electron radius 

–in fact he thought his anti-electrons were protons…  

 Not to worry. Mathematicians always make up fantasies about 

how physicists might have learned from them. Yours is at least 

intelligible, though Dirac is a bad target for this self-aggrandizement, as 

he was prone to gonzo mathematics. “  

❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆  

 
1. The Dirac equation for the electron. Translating its 

symbolism.  

 The Dirac Equation for the free (in the absence of an external 

field)  electron is:  
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 has 4-components, called spinors, each of which satisfies the 

equation independently. The notation refers, respectively to 

"electron spin up" "electron spin down" "positron spin up" and 

"positron spin down". 
β  is a 4-matrix given by 

! =
0 Id(2)

Id(2) 0
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α  is essentially a vector whose components are a  version of  

the 3 Pauli spin matrices in a skewed 4th order matrix 

representation. That is to say: 
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are the Pauli spin matrices, and  

 

! = (!1,!2,!3 )

!i =
0 "

i

" i 0
# 
$ 

% 
& 
;i =1,2,3

 

 

These are actually 4-matrices in abbreviated form. Writing 

them out explicitly gives: 
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These coefficients are elements of what is known as a 

Clifford Algebra. All of this will be explained in due course.  
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2..Historical and physical motivations that led 

Dirac to derive  this equation in 1928 

(a) Niels Bohr’s model of the atom 

  The Bohr model for the atom is a familiar one. It is the 

picture of the atom as commonly accepted by the public, with a 

host of electrons circling around a central core or nucleus, 

consisting of a tight conglomerate of protons and neutrons. 

 This model was excellent for the description and prediction 

of atomic spectra, but quickly ran into problems, even in as simple 

a matter as the calculation of the number of electrons that can fill 

up places in a given orbital, or 'sub-orbit' specified by a given 

quantum number.  

 It was then shown by Wolfgang Pauli, that the Bohr model 

placed tight restrictions on the number of electrons that could 

occupy a given orbit. This is now known as the Pauli Exclusion 

Principle and applies to all fermions.  

 Although Bohr's theory required that there be only one 

electron per sub-orbit, or orbital, Pauli's calculations showed that 

there could be two. Pauli referred to a “classically non-describable 

duplexity”, and it became customary to speak of a "duplexity 

paradox".  

 (b) The hypothesis of a spinning electron as an explanation for 

magnetism.   

A solution to the duplexity paradox was proposed by the 

Dutch physicists Samuel Goudsmit and George Uhlenbeck in 1925. 

If the electron were also spinning as it traveled about its orbit, the 
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interaction with its electric field would transform it into a tiny bar 

magnet. This intrinsic magnetism would explain duplexity, 

because two and only two 'directions' of spin would be allowed, up 

and down.   

 (c)The conclusion that the electron would "tear itself apart" 

through rotation. 

 It was pointed out that, in order that the electron produce a 

magnetic field of the required strength, it would have to be 

spinning at an incredibly high speed.  A calculation by Lorentz 

placed this speed at 137 times the speed of light! At such speeds the 

distribution of charge on the electron's surface would fly apart. 

 Finally there was a discrepancy in the geomagnetic ratio, g. 

This is the ratio of a charged particle's magnetism to its angular 

velocity of rotation. Classical calculations gave a value of g =1. The 

theory of Goudsmit and Uhlenbeck postulated g = 2 

 Other contradictory properties of the original spin hypothesis 

proposed by Goudsmit and Uhlenbeck were discovered by Fermi 

and Rasetti 

 (d) Dirac's electrons as  "point particles".  

 By 1928 several equivalent formulations of the principles of 

quantum theory had been developed, notably those of Heisenberg, 

based on matrices, Schrödinger based on his wave equation, and 

Dirac's transformation theory, based on extending classical 

Hamiltonian formalism to the quantum level by exploiting the 

analogy between Poisson Brackets {P,Q} and the Heisenberg 

commutator operator (P,Q) = P(Q) - Q(P) .  
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 Dirac's transformation theory requires that one treat the 

electron as a point charge, with no volume or thickness. A point 

cannot be said to be spinning.  

 The impasse was resolved first, not by Dirac, but by Oscar 

Klein and, independently, Walter Gordon in 1926, through an 

elementary extension of the standard transformation scheme of the 

Schrödinger equation by Special Relativity. 
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3. The Klein-Gordon equation. 

  There is a formalism for transforming the classical 

Hamiltonian into the Schrödinger wave equation whereby one 

replaces observables such as energy, time, position and 

momentum, by operators. 

 Start with H = K + V  

 H is the Hamiltonian, numerically equal to the total energy 

 K is kinetic energy, V potential. One way of writing the 

kinetic energy is   K = 1
2m

r 
p •

r 
p  where 

  

r 
p = (mvx ,mvy ,mvz )  is 

the momentum. The Hamiltonian Equation becomes  

  H(! E) = 1
2m

r 
p •

r 
p +V  

Replace H by its numerical value, E, and treat  V as a constant 

operator, that it is say, it multiplies whatever function is placed in 

front of it by its numerical value.  In everything following we will 
make the convenient assumption that c=1, h/2π  = 1 

 The replacement schema is: 

 

  

E ! i
"( )

"tr 
p ! #i$( )
V !V • ( )

 

 The "upside down delta" is a standard notation for the gradient.  

 When applying this to the Hamiltonian equation, one 

translates the dot product into composition of operators. 

 Formally, 
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  which is the standard time-dependent Schrödinger 

wave equation.   

 The introduction of Special Relativity leads to important 

modifications of the observables of energy and momentum. Its 

formalism unites energy and momentum in a single 4-vector, in 

which energy appears at the time-component of the momentum. 

This can be notated in various ways. For example: 

 

  

(1)
r 
p µ = (E,

r 
p ), µ = 0,1,2,3

(2)pµ pµ = E2 !
r 
p 2

(3)E 2 = p2 + m2c4  
 

  (1)  is the expression for the 4-momentum as a 4 dimensional 

vector. 

(2) uses the Einstein convention of summing over the same 

repeated letter when it appears as both upper and lower index.  

(3) is the relativistic energy, a more accurate version of E = 

mc2. The letter c for the speed of light has been included for clarity. 

 What Klein and Gordon did was, simply to apply the 

transformation schema to equation (3): 
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E2 = p2 + m2c4

!

i" "t (i
"
"t) = #i$(#i$) + m

2

%#" 2
"t 2

& = #$2& + m2&

 

 Once again one sets c =1. The symbol ϕ  is used instead of ψ  merely 

to indicate that this is a modification of the non-relativistic 

Schrödinger equation. This is the Klein-Gordon Equation. 

 As a footnote, let me add that there is a theorem, known as 

the Groenwald-van Hove Theorem  which shows, by an explicit 

calculation, that the "Replacement Scheme" of Quantum 

Mechanics, whereby one replaces Observables and their products 

by Operators, breaks down when the order of the products exceeds 

2. That is to say that even as expression as simple as the 

commutator of 

(Position) 3 with (Momentum) 3 = [Q3, P3} , 

yields two different expressions when calculated in two equally 

valid ways. In other words, the measurement of Phase Space 

volume, which is the product of P3 with Q3, lies outside the 

formalism of Quantum Theory.  For the details consult page 101, 

Sternberg and Guileman "Symplectic Techniques in Physics”, 

Cambridge University Press, 1984.  
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4. Both Pauli and Dirac derived linearized reductions of  the 

Klein-Gordon equation. Why was this deemed necessary? 

 (a) Dirac’s transformation theory, based on the analogy of 

Poisson Brackets from Classical Mechanics with Heisenberg’s 

quantum commutator, only works for linear equations. 
 (b) Born’s interpretation of the square of the modulus of ψ  as 

a probability, only works for linear equations. 

 (c) The Klein-Gordon equation has negative energy solutions 

for which it gives no explanation. This would not have mattered in 

the normal classical situation,  in which one discards the solutions 

that don’t fit. In the quantum situation however,  the transitions 

from positive to negative energy states are an inevitable 

consequence of the probability interpretation of the wave function.  
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5. A digression into the theory of quadratic forms. 

 One of the many ways in which Physics is distinguished 

from Mathematics is that mathematicians since Pythagoras have 

been enamored of quadratic expressions, whereas physicists prefer 

linear equations whenever possible. It is rare indeed to encounter a 

mathematical theory that tackles equations of the third or higher 

degrees, not to be confused with the number of dimensions, which 

can be anything.  (Just yesterday I came across a theorem about the 

close packing of 24-dimensional space by   24-dimensional spheres! 

However theequation of an n-sphere  is a quadratic form in n 

variables. ) 

 A notable exception to this general rule is the recent proof in 

1995 of Fermat's Theorem by Andrew Wiles, which uses the 
properties of the cubic polynomial y2 = ax3 + bx + c  

   A homogeneous quadratic form   is a polynomial expression in n 

variables in which each component is of degree 2. For example: 

 

Q(x.y.z) = 5x2 + !xz " 7xy + y2 + 8,529.1z2  
 

  It is easily shown that any quadratic form can be converted 

into an expression consisting only of squares of the independent 

variables by a linear transformation, that is to say, a matrix A. If the 

coefficients are real, this matrix substitution can be so chosen that 

the coefficients of the new form Q'(x', y', z') will be 1, -1 or 0. Thus, 

the above form can be reduced to 
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Q(x.y.z) = ±x 2 ± y2 ± z2  
 

where I’ve not bothered to take the trouble to find out which 

combination of plus and minus signs will result.  

     An important theorem by Sylvester, the "inertia theorem",  states 

that, in whatever fashion this reduction is made, the difference 

between the number of plus signs and the number of minus signs 

is an invariant. This is an essential feature of General Relativity. 

The "signature" of all metrics in the Riemannian spaces of General 

Relativity is +---, that is to say inertia = -2. 

 In physics, which deals with quantities and magnitudes, one 

often wants to factor higher order polynomials into linear factors. 

Lets examine this procedure systematically, starting from 1-variable 

expressions. 

 (1)      Q(x) = x 2 . 

 If x is a real variable, obviously one can factor Q into Q = 
q1q2, where q1 = cx, q2= (1/c) x, c being an arbitrary constant.   

 (2)     Q(x, y) = x 2 ! y2 .  

This also can be factored in an obvious fashion as 

 

 
Q(x, y) = (x ! y)(x + y) = q1q2
q1 = c(x ! y);q2 =

1
c (x + y)

 

The composition of linear operators is analogous in many 

respects to ordinary multiplication. Thus, the equation  
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! 2 f (x, t)
!x2 "

! 2 f (x,t )
!t 2 = 0   

 

can be factored into two particular equations  

 

!f (x,t)
!x

"
!f (x,t)

!t
= 0

!f (x,t)
!x +

!f (x,t)
!t = 0

 

to produce a general solution of the form: 

 

z = A!1(x + t) + B!2 (x " t)  
 

  (3)      Q(x, y) = x 2 + y2   

 It isn't possible to factor this over the field of the real 

numbers. In order to factor such expressions one must extend the 
field of real numbers R, to the field of complex numbers C. This 

was first done in the 16th century by the genius, doctor, astrologer 

and charlatan, Girolamo Cardano. However a real understanding of 

how to work with "imaginary" quantities, or complex numbers, did 

not emerge until the 18th century. 

 The 19th century saw the introduction of the idea of factoring 

over a field, or more generally, over some algebraic space, which 

means that the factors remain in the same space as the variables 

and functions in the original expression. Thus, the expression in (3) 

can be factored as  
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Q(x, y) = x 2 + y2 = (x + iy)(x ! iy)
= z • z *
z = c(x + iy);z* = c(x ! iy)

 

Observe that the numbers x and y, as well as the quadratic form Q 
are all in the field of the real numbers R , but that the "new" 

numbers z, and z* are in the "extended field" of the complex 

numbers. The constant c may be either real or imaginary.  

 It also turns out, and this is not trivial, that if x and y are 

replaced by complex numbers u and v from C , that Q can still be 

factored in the same way:  

 

Q(u,v) = u2 + v2 = (u + iv)(u ! iv) = (v + iu)(v ! iu)
u = a + ib;v = c + id
u2 = a2 ! b2 + 2iab;v2 = c2 ! d2 + 2icd
u + iv = (a2 ! b2 ! 2cd) + i(2ab + c2 ! d 2 )

 

Thus, the field "invented" for the factorization of quadratic forms 

in two real variables is "large enough" to permit factorization of 

quadratic forms put together from elements in that extended field.  

Complex numbers may have been considered mysterious when 

they were first discovered, but they lose much of their air of 

mystery when interpreted as matrices, invented by the English 

mathematician Cayley. We can represent i by a matrix in many 

ways. The simplest way is to write 

 

i !
0 1
"1 0
# 
$ 

% 
& ;i

2 =
"1 0
0 "1

# 
$ 

% 
& = "I2 , 
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 where I2 is the identity for the semigroup of 2x2 real matrices. The 

solutions z and z* of the quadratic form Q can then be written as  

z = x
1 0
0 1
! 
" 

# 
$ + y

0 1
%1 0
! 
" 

# 
$ =

x y
%y x
! 
" 

# 
$ 

z* =
x %y
y x
! 
" 

# 
$ 

zz* =
x y
%y x
! 
" 

# 
$ 
x %y
y x
! 
" 

# 
$ =

x2 + y2 0
0 x2 + y2

! 
" 

# 
$ 

= (x2 + y2 )I2

 

 The reason for demonstrating this relationship is to show 

how the study of ways to factor quadratic forms eventually became 

the search for algebras of matrices,  in which these forms could be 

interpreted and factored.  The next level shows that this step is 

inevitable.  

  (4)      Q(x, y,z) = x2 + y2 + z2  

  It was quickly discovered that it is not possible to factor this 

expression over the field of the complex numbers. In fact, it can 

only be factored by going to the next level, that is to say quadratic 

forms in 4 variables, and setting one of the variables to 0. In order 

to understand how this is done, I have to say a few words, briefly, 

about the concept of a field. A field is the algebraic generalization 

of a space in which it’s possible to do ordinary arithmetic. Keeping 

this in mind, its axioms are readily described: 

 A field F is an algebraic space that is closed under the 

operations of addition, multiplication, subtraction and division. 

Addition (+) is the operation of an Abelian group, that is the say 

a+b = b+a for elements a b in F. Multiplication (x) is also a group 
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operation, with the qualification that the identity of addition, that 

is to say "0", does not have an inverse. Finally, addition and 

multiplication are related by the Distributive Law: If a, b and c are 

any 3 elements of F, then  

a(b + c) = ab + ac  

 The real numbers are a field; the complex numbers are a field. 

The fractions p/q where p and q are integers and q≠0,  are a field,  
Given any non-zero real number ω  , one can construct a field by 

taking all polynomial expressions in ω  , together with all ratios, 

sums and productions  of these polynomials to make a field which 
is written as F(ω  ) .  

 Not all fields can be represented by matrices. In fact the 

simplest fields, those of the integers modulo p, Zp, where p is a 

prime number, can’t be represented by matrices.  There also exist 

algebraic structures which arise naturally, which are not fields, and 

which can’t be represented by matrices. Octonions are what is 

called a “division algebra”. In it one can factor quadratic forms of 

up to 8 variables. Because its multiplication is non-associative one 

can’t do much else.  

 

 (5)    Q(x, y,u, v) = x 2 + y2 + u2 + v2  

 

 The search for a field over which this quadratic form can be 

factored was undertaken by William Rowan Hamilton, the same 

person after whom the "Hamiltonian" is named. He discovered a 
field H, the quaternions  , over which it can be factored, provided 
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that the variables are all real and the inertia is 4 (that is to say all 

components are positive). It was considered quite an innovation 

that the multiplication in this field is non-commutative. Nowadays 

it is generally understood that matrix multiplication need not be 

commutative. 

 It has been proven that the only continuous fields that can be 

represented by families of matrices with real numbers as entries 
are R, C, and H, that is to say, the reals, the complex numbers and 

the quaternions.  

 A quaternion is a linear expression involving one real 

variable and 3 "square roots" of minus 1 , i, j, and k. If q is an 

element of H it may be written as: 

q = x + iy + ju + kv  

The product rules for i, j and k are: 

 

i2 = j 2 = k2 = !1
ij = k = ! ji
jk = i = !kj
ki = j = !ik

 

Once again, these rules are easily understood when quaternions are 

represented as matrices.  

 The sums, products, ratios, etc. of 1, i, j, and k, with 

coefficients in the real numbers, generate the field H. The 

expression (5) may be factored over H as: 
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Q(x, y,u, v) = x 2 + y2 + u2 + v2

= (x + iy + ju + kv)(x ! iy ! ju ! kv)
= qq*

x + iy + ju + kv
x ! iy ! ju ! kv

_ _ _ _ _ _ _ _ _ _ _ _ _
x2 + ixy + jxu + kxv

!ixy + y2 ! jiyu ! kiyv
! jxu ! ijyu + u2 ! kjuv
!kxv ! ikyv ! jkuv + v2

= x2 + y2 + u2 + v2 !

 

 In this calculation it is assumed that all of the variables are 

real. It will be important when we come to the Dirac Equation to 

observe that this method doesn't work for the quadratic form: 

 

            (6)     Q(x, y,u, v) = x 2 + y2 + u2 ! v2   ! 

Why is that so? One is tempted to rewrite  -v2  as +(iv)2 , then 

use the factorization over the quaternion field described above. 

The problem with this is that the "i" in expression (6) is not the 

same "i" as the one that appears in the table of quaternions. Indeed, 

this is a misnomer, and the quaternion "i" really ought to be 

replaced by another letter such as h . I've kept the standard 

notation only because of the difficulties involved in resisting 

tradition. 

 Exercise:   Try substituting x, y, u and iv into the factorization 

qq* and see what happens.  
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6.  Dirac’s factoring of the Klein-Gordon Equation 

The Klein-Gordon Equation is a second order linear operator 

equation, of type (6). It cannot be factored over the field of the 

quaternions. However it can be factored over a weaker algebraic 

space known as a Clifford algebra, invented by the English 

mathematician William Clifford and discovered independently by 

Paul Dirac in the 1920's. It is somewhat remarkable that all of the 

techniques involved in this subject were discovered or developed 

by English mathematicians or mathematical physicists: Cayley, 

Sylvester, Clifford, Hamilton and Dirac. The legend that Dirac re-

discovered Clifford algebras by staring into a fireplace over a good 

dinner at an English pub may well be true, but it’s clear that the 

context had prepared the way for him.  

Here is a quote from “The Rainbow of Mathematics” by the 

historian of mathematics, Ivor Grattan-Guinness, 1997: 

“Especially from the late 1880’s, Heaviside revived the 

English liking for operator methods.” 

 Let’s re-examine the Klein-Gordon Equation:  

! 2"
!t2

= #2" $m2"

= (! 2
!x2

+ ! 2
!y2

+ ! 2
!z2

)" $m2"
 

 Expressed in a pure operator form, without the Schrödinger 

wave equation, and replacing the missing "c" for clarity, this 

becomes: 
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! 2
!t2

= "2 #m2

= !
2

!x2 +
! 2
!y2 +

! 2
!z2 # c

4m2
 

which is clearly of type (6). Since Dirac wanted a linear equation, 

he decided to start with a linear form of unknown coefficients, 

compose it with itself once, identify coefficients on both sides of 

the equation, and see if what he came up with made any sense! 

Thank goodness Dirac was not trained as a mathematician. By 

stumbling around in areas in which mathematicians knew how to 

go about doing things, he walked into paradises they might never 

have visited! 

 Thus, Dirac begins with an abstract form to which he will 

later try to ascribe some meaning:  

i
!"

!t = (#i$ •% + m& )"  

The symbols α  and β  for the moment are meaningless letters, 
although α  is going to be a "vector" of some kind = ( α1 ,  α2, α3 ), 

and β  will be a "scalar”, so-called. Iterating both sides, one gets  

 

i!
!t
(i!

!t
) = "! 2

!t2
("i# •$ + m% )("i# •$ +m% )
=

 

  

 The calculation on the right side is somewhat involved, but 

can be reduced to:  
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= ! "i
2

1

3

# $ 2
$xi

2 ! ("i" j +" j"i )
$ 2
$xi$x j1

3

#

!im ("i% + %"i )
$
$xi1

3

# + % 2m2  

     Comparing this with the Klein-Gordon equation one sees that 

the following relations have to hold between the alpha- and beta- 

coefficients: 

! 

" i

2
=1

" i" j +" j" i = 0

" i# + #" i = 0

# 2 =1

 

 

     These are the defining relations for  the matrices of Dirac's 

Clifford Algebra. By comparing them to the quaternions we will 

see that they bear a close resemblance but aren't the same. The 

relationship between them can be seen by looking at the way they 

relate to the Pauli matrices, which arise from Pauli's very different, 

yet equally ingenious linear reduction  of the Klein-Gordon 

Equation. Pauli's technical feat  leads to the two-component spinors 

for describing particles of spin 0, while Dirac's factorization leads 

to the 4-components spinors used in the description of spin 1/2 

particles. Write the Pauli matrices as: 
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!1 =
0 1
1 0
" 
# 

$ 
% ;!2 =

0 &i
i 0
" 
# 

$ 
% ;!2 =

1 0
0 &1
" 
# 

$ 
%  

Since i is itself a matrix, one can expand these into 4th order 

matrices as 

S1 =

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

! 

" 

# 
# 

$ 

% 

& 
& 

S2 =

0 0 0 1

0 0 '1 0

0 '1 0 0

1 0 0 0

! 

" 

# 
# 

$ 

% 

& 
& 

S3 =

1 0 0 0

0 1 0 0

0 0 '1 0

0 0 0 '1

! 

" 

# 
# 

$ 

% 

& 
& 

 

The quaternions are related to the Pauli matrices by a simple 

product 

qk = i!k ;k =1,2,3

q1 ="i"= i
0 1
1 0
" 
# 

$ 
% =

0 i
i 0
" 
# 

$ 
% 

q2 =" j"= i
0 &i
i 0
" 
# 

$ 
% =

0 1
&1 0
" 
# 

$ 
% 

q3 ="k"= i
1 0
0 &1
" 
# 

$ 
% =

i 0
0 &i
" 
# 

$ 
% 

 

    One sees how the use of the same letter "i" causes confusion. The 
matrix q3 is quite different from the matrix for the square root of 

minus 1. Indeed the latter is included in the former!  
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In the 4th order representation, these become 

Q1 =

0 0 0 !1
0 0 1 0

0 !1 0 0

1 0 0 0

" 

# 

$ 
$ 

% 

& 

' 
' 

Q2 =

0 0 1 0

0 0 0 1

!1 !0 0 0

0 !1 0 0

" 

# 

$ 
$ 

% 

& 

' 
' 

Q3 =

0 !1 0 0

1 0 0 0

0 0 0 1

0 0 !1 0

" 

# 

$ 
$ 

% 

& 

' 
' 

 

 

We now compare these with the Clifford Algebra matrices that 

appear in the Dirac Equation.  

 

!
1

=
0 "1
"
1

0

# 
$ 

% 
& 

!
2

=
0 "2
"
2

0

# 
$ 

% 
& 

!3 =
0 "3
"3 0

# 
$ 

% 
& 

' =
0 I

2

I2 0

# 
$ 

% 
& 

 

 The σ ’s of course are the Pauli matrices. As these expressions 

are abbreviations for 4 matrices. they can be also written as: 
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!1 =

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

" 

# 

$ 
$ 

% 

& 

' 
' 

!2 =

0 0 0 (i
0 0 i 0

0 (i 0 0

i (0 0 0

" 

# 

$ 
$ 

% 

& 

' 
' 

!3 =

0 0 1 0

0 0 0 (1
1 0 0 0

0 (1 0 0

" 

# 

$ 
$ 

% 

& 

' 
' 

) =

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

" 

# 

$ 
$ 

% 

& 

' 
' 

 

  

The Clifford matrices do not generate a field. In fact, if one 

takes all productions and sums, with real number coefficients. of 

the Clifford matrices, one finds non-invertible, or singular 

matrices, and "divisors of 0”, that is to say non-zero matrices which, 

when multiplied, give the 0-matrix as a product. This weaker 

structure is what is known as an "algebra", and it is not always 

possible to represent them with matrices. A recent example are the 

so-called "q-matrices" or "Quantum Deformed Matrices" which 

have become a growing field of mathematics, bringing together 

ideas from Quantum Field Theory and Knot Theory.  
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7.  Consequences of the Dirac equation for physics. . 

(1) Spinors and the Spinor Calculus.   Pauli’s method for 

factoring the Klein-Gordon equation led him to the discovery of 2-

component spinors. Dirac carried this further with the discovery of 

4-component spinors. A mathematical theory was developed by 

Elie Cartan in which spinors can have any even number of 

components.  

(2)  Anti-matter.  Dirac’s original interpretation of the 

negative energy states posited a negative-energy field that filled all 

of space, with the exception of “holes” into which an electron could 

spontaneously vanish. Feynman proposed the existence of the 

positron which was discovered by Anderson in 1932 

(3) The probability current expression   derived from Dirac’s 

equation describes the behavior of particles of spin ½.  

(4) Quantum Field Theory  , the many particle treatment of 

quantum theory which quantizes fields as well as  observables, 

comes naturally  out of the interpretation of Fermi- Dirac statistics, 

which are inherent in the Dirac equation.  

❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆  

❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆  

 

 
 
 

 
 

 

  



29… 

 
 
 

 

 

 

 
 

 
 


