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 One of the major difficulties in modeling causation by analytic 

functions is that of  modeling jump discontinuities which are  

predictable   from the previous history of a system. 

 


Time=T

State Variable=S

 

Figure I 

 No analytic model of the behavior of a system S before the moment 

t can predict the jump discontinuity at t , or the fact that S continues to 

function in an analytic fashion after t . However such events are a 

commonplace in Nature. Breakdowns, explosions, faults, ruptures, etc. 

are not only frequently encountered, but are predictable.  In many 

situations it is also possible to know  what will happen after the singular 

event has occurred. For example, a doctor may know that a patient's heart 

attack is imminent. He knows that it will not be fatal and that the 

patient, provided he follow certain procedures, will resume a normal life. 

    In the situations described In this article there exists a hidden 

process which does not reveal itself by any outward manifestations. The  
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external behavior of the system appears to be "smooth". The hidden 

process  on the other hand works by  slow accumulation. At certain 

singular momentsn ,... , it erupts in an explosion, then dies 

away almost as rapidly, perhaps to begin the process of accumulation 

once again.  

 In  this paper we will be looking at 3 characteristic situations in 

analytic modeling, and interesting ways of dealing with them. Although 

we will not be examining the modeling of jump discontinuities by a 

Fourier series, these observations may readily be extended to them.  

 

1. Rearrangements of Taylor series 

Consider the infinite series representation:  

 

ln(1 x) 
(1)n xn

n
n0



 ;0  x  1 

This series is conditionally convergent at the point x = 1. It can 

therefore be rearranged so that at x = 1 it will converges to any closed 

interval, from a discrete point to the entire real line. Choose a 

rearrangement : n --->  n , which causes this series to converge to "3" at 

the point x=1. Thus: 
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     Let G be an analytic (real) function that rises to the value 1 at the time 

 , then declines asymptotically to 0 as x --> ∞   .  For example: 

 

G(x)  cos
(x)2

2(1(x )2 )  
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Then the behavior of h at  cannot be "predicted" from its analytic 

representation away from t.  However, this behavior can be predicted from 

knowledge of the analytic representation at any point , plus information 

about the  rearrangement permutation ,  .  

This permutation is the "process" . One can further imagine that 

this process of juggling the entries of the infinite series proceeds in some 

fashion through time. One is speaking of a "secondary time dimension s" 

in which it acts, invisibly, until the moment when the  jump occurs. For 

example, if we replace G by some periodic function, say  (sinx)2 , and  

by some continuous or quasi-continuous process of continuous 

rearrangement of the terms of the series for ln(1+  (sinx)2 ) one can model 

a situation in which the state variable S  erupts  in a quasi-random or 

unpredictable fashion at a predictable series of moments x = (n+1/2  )   .  

 The process can be seen as somehow operating in the deep, secret, 

hidden or unknown level of the history of the state variable; something 

like a bridge that appears to be structurally sound until it collapses 

because of a systematic degradation of its strength that no-one was able 

to detect. Or , as Shakespeare puts it : "This is the impostume of much 

wealth and peace..." 

 The causal description of such systems can be symbolically 

represented as F(t) = { (t); (t)=s } . where   is the smooth outward 

behavior and s is the "accumulator time" . Note that in the previous 

example, If one replaces (sinx)2   by an almost periodic function such as  
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k(x)  A(sin x) Bsin( 2x)  

one can easily find ways of tweaking the argument of ln(1+x) to create a 

function which, in combination with the process "explodes" in  quasi-

random moments to random values, but which is smooth and analytic at 

all other times.  

(2). Unknown boundary conditions 

  The paradigm of this situation is that of a billiard ball being 

deflected at the walls in its trajectory around a pool table.  At any point 

in mid-trajectory, the state variables of the billiard ball can tell us 

nothing about the shape of the table at its boundaries. These state 

variables can give us at most mass, position, time, momentum and 

energy. Furthermore, if the walls of the table were to suddenly change 

their configuration, this alteration in the state of the "universe" would 

not register in any of the state variables determining the calculation of 

the world line of the billiard ball. 

 In the same way, even if, in some theoretical sense, the relative 

positions, masses and velocities of every particle in the universe at a 

given instant were known, we would know nothing about the shape of 

the universe in which they must interact: is it finite or infinite? Elliptic, 

Euclidean or Hyperbolic? Perfectly spherical or shaped in some odd way.  

 

(3)Collisions 

 The simplest situation in mechanics, that of colliding massive 

objects,  can be modeled by a pair of analytic equations which, together,  

embed  'jump discontinuity' at the instants of collision. One is speaking 

indeed of an analytic variety  of collision moments 
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 The equations are those of  Energy and Momentum: 

 

E  1
2
M1v1

2
 1
2
M2 v2

2

  M1v1 M2v2
 

 

Together they define a pair of  analytic curves, an ellipse and straight 

line,  on the  v1, v2  plane .  The variety formed by the intersection of 

these curves is a pair of discrete points. The effect of a collision is 

modeled by the "jump". The  velocities at p = (v1, v2 ) "jump" to those at 

the other point p* = (v1*,v2*) .  
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 We have shown various ways by which analytic functions, and 

collections of analytic functions can model discontinuous and quantized 

behavior. To summarize: 

 (1) Processes. A conditionally  converging infinite series combined 

with a process on the indices, can model situations in which change in 

hidden in the way the various contributing forces are accumulated, never 

revealing itself save at certain key dramatic moments of breakdown. The 

behavior of the system is not predictable from the function, but can be 

seen in the infinite series. Example:  
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y 
(1)n j (sin t)2n j

njj1



  ln(1 sin2 t)  

This has jumps at the points t = (n+1/2)If the series is systematically 

rearranged through permutations on the indices of the summands, it can 

jump to any preassigned value, or oscillate within any pre-determined 

segment of values  a < y < b  .  

 

 (2) Boundary conditions. The local information derivable from the 

configuration of all the state variables of a billiard ball in mid-trajectory 

reveal only so much of its future as can be given before its next collision 

with the walls of the table. However, knowledge of the shape of the table 

combined with that of the configuration of the billiard ball, re-introduce 

a determinist model for all future states 

 

 (3) Varieties of singular points obtained through the intersections 

of collections of analytic functions in several variables. The paradigm for 

this is the collision. Such discontinuous behavior does not violate 

causality or modelling by analytic functions.  
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