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Readings in Statistical Mechanics, with commentaries. 

        These studies were undertaken in the Spring of 2011 anticipation of 

giving a series of lectures in the Wesleyan Physics Department.  Despite 

the considerable amount of work evidenced in these notes, and certainly 

through no fault of his own, the project fell through.  

        I would be happy to give the lectures for a fee of $300 or more. 

Dr. Roy Lisker 
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  From Ilya Progogine: “From Being to Becoming” WH Freeman 1981,    

                Chapter 2: The belief in strict determinism is only justified 

when the notion of a well-defined initial state is not an excessive 

idealization. Otherwise the concept of a world line must be replaced by 

that of ensembles of world lines. 

       Gibbs, Einstein: A representative ensemble is a cloud of points that 

is simplified into a continous fluid, with density = ( q1,    , qs; p1 ,.., ps ; t)  

. This “density” is fictive, but it allows one to make some sense of the 

otherwise ridiculous idea that a fluid can have an invariant “Liouville 

volume” fixed for all time, and a evolving “Boltzmann volume” that 

equals the exponentiation of the ever increasing entropy.  

A “microcanonical ensemble” is one that is uniformly distributed 

on a constant energy surface 

 A “canonical ensemble” is a system in contact with a 

theoretically infinite energy reservoir, at unvarying energy T.  
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 What are the conditions that must be imposed on the dynamics 

of a system to insure t hat the distribution function will approach either 

the microcanonical or canonical ensemble? 

A system is “integrable” if there is a Hamilton-Jacobi transformation that 

transforms it into Action/ Angle variables, that is to say, constant first 

integrals and trigonometric expressions. These eliminate potential 

energy and have the simplified equations: 
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Pages 7-15 If all systems were integrable, there could be no 

thermodynamic limit or approach to equilibrium . The time invariant 

character of the Jj  , fixes the long term behavior.  

************************************************** 

         Gallavotti, Reiter, and Yngvason editors: “Boltzmann’s Legacy” 

Conference lectures  European Mathematical Society, c2008: 
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G. Gallavotti, E. Lieb, J. Lebowitz, C. Cercignani, GD Cohen, C.  Villani, W 

Reiter and others 

Pgs. 7-15, Giovanni Gallavotti:  The “proof” of the Equipartition 

Theorem in Boltzmann’s paper of 1872 is only value for isochore 

transformations (no change in volume, hence Work =W= -pdV =0 ) and 

depends on the periodic motions of individual particles. A closed 

chamber of fixed volume, and with periodic motions. The “equipartition 

theorem” follows: the uniform distribution in space will project 

uniformly onto any fixed energy surface.  

Boltzmann also assumes periodic motions for individual particles 

without collisions, then tries to cheat by saying that non-periodic 

motions are really infinite periods 

 Boltzmann looks for integral expressions that imitate or mirror 

thermodynamic quantities and their behavior, then goes on to assume 

that this is enough to make them the same things: qualitative similarity 

becomes quantitative identity! 
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To quote Gallavotti: “The thermodynamic analogies for small, 

simple systems transform into real thermodynamic relations for large 

complex systems” 

The fundamental relationship that he wants to preserve is 

dS = (dU+pdV)/T 

       To justify this conflation of ideas, Boltzmann makes two 

assumptions, both of which are demonstrably false: 

        Assumption 1: The Stoss- Zahl- Ansatz (density of collisions is the 

same everywhere, and uncorrelated before collision. The irreversibility 

then follows automatically from the fact that they cannot be uncorrelated 

after collision)  

        Assumption 2: The Ergodic Hypothesis  (Molecules go through all 

possible states of motion. Or, time integrals equal space integrals.)  

    Gallavotti, continued:  

     Boltzmann’s fundamental paper of 1872:  
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(1) Identify absolute temperature ( at equilibrium) with average 

kinetic energy per particle, over the periodic motion of a 

macroscopic collection of N identical particles 

(2) Energy U = H(p,q) 

(3) Pressure is created by collisions of particles on walls 

Given these assumptions, p can be identified with the time average 

of the partial derivative with respect to volume of the energy. The 

fundamental equation then  follows (this is well demonstrated in Fermi’s 

book on Thermodynamics ) Boltzmann’s endorsement of the ergodic 

hypothesis is consonant with a picture of a “discretized phase space” 

Points are “cells” of finite size. Then the ergodic hypothesis implies a 

dynamic passage of the system through all the cells, as a 1-cycle 

permutation. “It is very doubtful that the dynamics of a gas has only one 

cycle”. The hypothesis breaks down in computer simulations. Needless 

to say, “equipartition” becomes a triviality. 

Gallavotti loosens up the ergodic hypothesis by the assumption 
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that it acts only on the “attractor” of the system. This has lower 

dimension , measure 0.  

********************************************************** 

Pgs. 16-20 Elliott Lieb 

 Foundations piled on top of foundations: 

    Thermodynamics is founded on Statistical Mechanics 

     Statistical Mechanics is founded on  

(1) Newtonian Mechanics 

(2) Probablity Theory 

Probability  is founded on Measure Theory  

Measure Theory is founded on 

(1) Topology 

(2) Geometry 

Topology is founded on Set Theory 

Elliott Lieb: Stat Mech is based on 3 absurd notions: 

                      The ergodic hypothesis is ridiculous 

                     The equipartition assumption is ad hoc 
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  The Stoss-Zahl-Ansatz is self-contradictory 

Why, then, does statistical mechanics work?  

Elliot Lieb continued , pg. 27:  

Invokes two styles of doing physics 

(i) Look at detailed interactions of particles 

(ii) Look at large scale effects of particle interactions 

The latter was Boltzmann’a approach: “Search for a function (any 

function) of the variables of phase space, that is continuous and 

differentiable (dx. dS, dE are well defined)  and always increasing in 

time. In 1889 Poincare showed that there doesn’t exist any function of 

the phase space variables that can do that.  

 A quote from JW Gibbs: “The laws of thernodynamics are easily 

obtained from the principles of statistical mechanics, of which they are 

the incomplete expression.” 

Boltzmann’s insight: statistical ensembles lead to the Clausius 

Inequality. 
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      Little Boltzmann Equation:  S = kBlogW . W is the area of the 

surface in phase space. It is assumed that the energy surface is 

discrete, and one uses “Boltzmann inflation”!  

 In the continuous limit: 

nnB dpdpdqdqkS ......ln 11   

Where is the probability density in phase space. When applied to 

quantum mechanics the formula becomes 
)ln( TracekS B

    

    20th century developments are a major departure from Boltzmann: 

(a) Specific heats are suppressed relative to classical values 

(b) Superfluidity, super-conductivity, Bose-Einstein condensates are 

contrary to the assumption that the world becomes more chaotic 

with time 

(c) Contrast of gravitational degrees of freedom, radiative degrees of 

freedom, and the collisional degrees of freedom lead to very different 

ways of looking at Entropy over time.  
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(d)     The literal use of the Boltzmann entropy expression 

TkHExp B/(
   

gives a value of - ∞ for entropy at absolute zero. This means that 

quantum mechanuics and the von Neumann trace matrix must be 

brought into play.  

************************************** 

Joel Lebowitz: 

Many conceptual and mathematical problems involved in the passage 

from a time-symmetric Hamiltonian at the mictoscopic level, to a time 

asymmetric diffusion equation at the macroscopic level. 

       (1)  ”Atoms are simplified to the point of caricature”.  

Quote from Feynman: “(Atoms are) particles in perpetual motion that 

repel when squeezed” 

 (2) Irreversibility 

 (3) Coarse Graining. Notion of a “density” that makes sense only 

when phase space is divided into indivisible cells.  

**************************************** 
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Commentary by Roy Lisker 

Statistical Mechanics is in the best traditions of theoretical physics, and 

Boltzmann was a genius in that tradition. There is a 6-step procedure: 

 Step 1: One accurately describes a phenomenon empirically which 

is not understood theoretically . (Eg. The mathematics of 

thermodynamics, which is really a description, not a theory) 

Step 2: A model is proposed 

Step 3: Lousy mathematics uses the model to derive pre-existing 

formulae presented in step 1 

Step 4: The mathematics is used to make predictions, which 

exposes its  limitations 

Step 5: The mathematicians come in and clean up the mathematics 

Step 6: The process advances BOTH physics and mathematics.  

***************************************************** 

A short list of the absurdities in the standard models for Stat Mech: 

(1) “Density” of a “perfect massless fluid” 

(2) Passage from a massless fluid of discrete particles, to a 
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continuous  fluid, uncountably many points forming a continuous 

volume. Counting is replaced by measure theory 

(3) Confusion between “ensemble” picture of Gibbs, and 

“configuration space” world-line of Boltzmann . To address this 

confusion, Boltzmann invents the “ergodic hypothesis” 

(4) After the  fluid has been rendered continuous, the phase 

space itself is “discretized”!  

(5) Yet, to make the probability work, a measure is applied to 

phase space, although  measures are of necessity continuous.  

 

 

Summarizing the bad  mathematics  

(1) The ergodic hypothesis 

(2) Equipartition of energy 

(3) Stoss-Zahl-Ansatz (molecular chaos) 

(4) Treating the micro-canonical ensemble as a continuum 

(5) Discretization of phase space 
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(6) Reversion to a continuum model for the phase space, so that one 

can get the Maxwell-Boltzmann distribution 

(7) The density of states 

(8) Criterion for “equivalence” of microstates in the macrostate 

(9) Loschmidt reversibility paradox 

(10) Poincare and Zermelo recurrence paradoxes. H-functions 

can’t be constructed.  

Quote, Gibbs: “The (postulate of) the impossibility of an 

uncompensated decrease of Entropy seems to have been reduced to an 

impossibility.” 

         Joel Lebowitaz, pg 70: This discussion should  be read in conjunction 

with the paper by  Sergio B. Volchan : Probability as typicality  

http://arxiv.org/abs/physics/0611172 

Probabilistic “typicality” is central to the Gibbs ensemble 

paradigm: All microstates with the same ‘typicality’ in their probability 

are amalgamated to the same macrostate. This is used to cover over the 

sheer impossibility of giving a precise “probability” to each microstate.  

http://arxiv.org/abs/physics/0611172
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Applying this notion to differing perspectives of  Gibbs and 

Boltzmann: 

    Gibbs: The phase space volume ‘spreads out” like a liquid (ink 

squirted into a glass of water), over the total phase space 

Boltzmann: A individual trajectory in phase space (of trillions of 

dimensions) covers the whole phase space in such a manner that it 

spends almost all of its time in the “typical” rather than the “rare” boxes.  

 

 

 

The Gibbs Paradigm 

(1) Begin with a container, like a cylinder, holding  1020 “particles”. 

(Recall that the atomic theory did not win acceptance until late in the 19th 

century. These “particles” are already a discretization)  

(2) Make this into a single point  in a 1020 dimensional Configuration 

Space .  

(3) Create a continuous ensemble of systems with all possible initial 
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conditions , that is to say, all possible energy distributions (momenta are 

considered less significant), under the constraint of a fixed total energy 

E, (or a pizza slice of energies between E and E+dE ). 

(4) Estimate the most typical outcome of the expansion of this fluid 

into a larger enveloping cylinder, in a length of time t under 

Hamiltonian collision dynamics ( which of course do involve momenta, 

another mathematical anomaly.) 

(5) By Liouville’s Theorem, the volume of the fluid doesn’t change, as 

it “thins out” over the enlarged phase space VC2 from the initial cylinder 

VC1 ,  

(6) However, although we’ve worked with the fiction of a continuous 

fluid, enabling us to use the Liouville Theorem, we now discretize the 

phase space, to invent a fictive volume obtained by adding up the 

number of cells that receive even one particle from the fluid.  

Here, quantum theory helps, and one can give a minimal size 

to the side of a typical cell in W, that is, it must be proportional to h. 

Thus  h is at the intersection in  Nature,  where  the Second Law goes 
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over into the Uncertainty Principle. Therefore, Quantum Theory is 

required to save even the most fundamental of all State Mech equations 

S = kBlnW .  

(7) The crucial difficulty is the  Stoss-Zahl-Ansatz : namely, that all of 

the microstates (cells of the phase space), have the same “likeliness” 

before the process begins (hypothesis of molecular chaos, ergodic 

equipartition). This diminishes with time.  

One now argues that the various permutations of a microstate all 

belong to the same macrostate. (These permutations remaining within 

the same set of locations. These increase with the opening of cylinder 

one into cylinder two) Simply stated, the fewer the symmetry principles 

the higher the typicality.  

      By maintaining  the ambiguity between the discrete and the 

continuous, one introduces Measure Theory and argues that the volume 

of special states has measure 0.    

(8) The criterion of ‘typicality” is the Maxwell-Boltzmann distribution 

of energies combined with a completely uniform spatial distribution. 
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(9) It is now assumed, rather grossly, that  a fluid of constant 

Liouville volume will typically cover all the cells of the new phase 

volume. The special states are those which cover only part of the new 

phase volume. But this makes nonsense of the Liouville volume notion. 

(10) Summarizing: maximal typicality has two features:  

     (a) Uniform distribution of particles (every cell has the same 

number of “particles”.  

      (b) Maxwell-Boltzmann distribution of energies within each 

cell! (The number of particles (cells?) with energy k = ½ v2 , is given 

by  

(11)  

************************************************************* 

Joel  Lebowitz continued pg 75:   

    Cosmological considerations: the eternal problem  of the “initial state 

of the universe”. It must have had vanishingly small entropy. But this 

seems to contradict the concept of a totally chaotic Big Bang.  
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       Roger Penrose’s  Solution: Low  entropy for gravitational degrees of 

freedom means a uniform distribution of matter. High entropy is 

manifest in clumping 

       Low entropy for random motion (gaseous, inertial, not gravitational, 

Gaussian distribution of velocities) means uniform motion. High 

entropy means chaotic or Maxwell-Boltzmann distribution. Likewise for 

radiation.  

******************************************** 

Carlo Cercignani, in the Gallavotti Antology  

(1) Boltzmann’s H-Theorem paper of 1872. There are two 

interpretations of the distribution function: 

(a) The fraction of a ‘sufficiently long” time interval during which 

the velocity of a specific molecule has values within a certain volume of 

momentum space 

(b) The proportion of molecules which, at a specific instant, have 
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a certain velocity within a narrow range of velocities. Boltzmann 

eventually realized that these were not equivalent and came up with the 

Ergodic Hypothesis: the position and momentum of every molecule 

eventually take up all possible values compatible with the given total 

energy.  

       Ehrenfest’s  assumption:  T = kB( average of K.E. perm atom) . This is 

only true for perfect gases and solids at room temperature.  

List of assumptions in the  Boltzmann Picture:  

a. Molecules are hard, perfectly elastic spheres. 

b. If the “state (p,q) is known with perfect accuracy, they can be 

reduced to points.  

c. Otherwise one invokes the probability distribution:  let the 

density be given by D=f(x,x, t); f0 = f at time t =0. Then  
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The “Ldxddt” term, gives  the expected number  of particles 
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passing out of a “cell” because of a collision. Gdxddt gives the number 

that enter. Obviously both are finite-usual uneasy back and forth 

between density and number. The end result is (H-Theorem paper of 

1872): 
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List of hidden assumptions: 

(1)    Stoss-Zahl-Ansatz. Although this  must be present initially. It is 

immediately destroyed by the interactions. However, it is argued that “it 

is only needed for molecules which are about to collide. However :  “It is 

very hard to to prepare an initial state in which chaos does not hold.” 

     One cannot, however, have non-correlation both before and after a 

collision. This is the Loschmidt argument against the H-Theorem.  
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In fact, according to Cercignani, the H-theorem seems to have a very 

limited validity, and is only used in studying the properties of dilute 

gases.  

        Since 2000 the Boltzmann equations have been the basis for 

extensive mathematical investigation and a search for rigorous solutions.  

(i) 1933 Proofs of Existence and Uniqueness for gas of hard 

spheres (Thespace is homogeneous, dependency on velocity 

and time, but not on position) 

(ii) 1949 Harold Grad’s theorems . Use of orthogonal polynomials 

(iii) Lanford’s famous theorem. Deriving Boltzmann 

irreversibility from reversible mechanics under very restrictive 

conditions.  

********************************************** 

E.G.D. Cohen, from the Gallavotti Anthology : Entropy, Probability, 

Dynamics  
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Boltzmann’s papers: 

(a)  1872, Mechanistic approach   

(b) 1877, Probability approach. This may have been influenced by the 

criticism from Loschmidt. The formula S= klnW comes from a paper of 

1887, and only applies to an ideal gas in thermal equilibrium.  

Now a new idea, different from “typicality” or “likeliness” appears: 

“complexions.  Complexions are an additive progression of discrete 

energies , …These are hypothesized to  be invariant both before and 

after collisions.  Each distribution of total kinetic energy is a 

“complexion”. The number of molecules with energy j is designated as 

j. Then  the number distinct energy distributions, P, that one wants to 

maximize is given by 



P 
N!

 j!
j1

q


 

       One employs basic combinatorics to derive the partition function.  
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***************************************** 

Erwin Schrodinger: “Statistical Thermodynamics” Cambridge UP 1964 . 

Using Stirling’s formula, one quickly derives 
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One method covers all forms of statistical physics, whether classical, 

quantum, Fermi-Dirac, Bose-Einstein, etc. 

  The principle problem in statistical thermodynamics is the distribution 

of a given amount of energy E, over a huge number of identical systems, 

atoms, molecules ,quanta. 

   A related, secondary issue: distribution of N identical systems over all 

possible states, given a fixed amount of energy E. 

 One disregards the interaction energy, gravitation, etc. This allows 

one to speak of an absolute energy per particle which is not shared. 
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Momentum is not considered, which is strange, since the motor of 

change is via collisions.  

       The standard sophistry: From one end: describing those features 

which are common to all possible states of the assemblage, which 

therefore “almost always” obtain. 

        From the other end: Those little boxes each with their single state. 

This creates two different attitudes towards the mathematical application 

to the physical results. 

        Attitude 1: N existing physical systems in real physical 

interaction.(electrons, gas molecules, Planck oscillators). This viewpoint 

only works with gases. There must be many identical constituents, and 

violates the very notion of a solid 

        Attitude 2 ( Willard Gibbs): N identical systems are mental copies of 

the one system. What, then, does it mean to distribute energy over N 

systems? We are free to regard any one of these systems as the one 

actually under observation 
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Consider N identical systems. The list of possible energy eigenvalues is 
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       If the system is classical, it is completely determined once one knows 

that S1 is in state l1 , S2 in state l2, etc. This isn’t true for quantum statistics 

which invokes probability amplitudes Each state has an “occupation 

number”, aj , which gives the number of electrons in a given state. 
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 Boltzmann observed that the maximum for P is astronomically  

much larger than any lesser value. This can be shown rigorously for  

 N  ∞ . However, when N becomes small one must pay attention to the 

fluctuations of Brownian motion. The standard treatment now follows. 
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To maximize ln P, we use the technique of Lagrange multipliers to the 

expression :  
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All of the ai’s are treated as if they were continuous, autonomous  

variables, although in fact they are integers. A better approach therefore 

would be to use the ratios of the ai’s to N, which, in the limit can be 

approximated as continuous variables. In any case, one invokes a crude 

approximation of Stirling’s Formula, then takes the derivative: 
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Solving for each al gives : 
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These are the basic formulae of of Stat Mech, from which the 

quantities of Thermodynamics, and the partition function, are 

derived. The partition function is the expression for E/N.  

*************************************************** 

Commentary 

     Mathematically this procedure is outrageous!! The aj’s are huge 

integers, one can hardly speak of “differentiating”. In  the Stirling 

formula, these extremely discrete functions making huge leaps are 

replaced by an “asymptotically continuous” function, with meaningless 

infinitesimal increments producing  controllable increases on the range.    

     Then, worse still,  one applies Langrangian Multipliers! Obviously 

there are othe means to the same results, but the procedure is ..well… 

absurd! 

********************************************** 
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Clearly one can get rid of .  

lla   ln  

        The multiplier  turns out to be the temperature. This is not 

surprising as its inverse is the integrating factor for dQ. To demonstrate 

this, Schrodinger imagines the interaction of two quantities of perfect 

gases, A and B. He (somewhat arbitrarily) assumes that the energies of 

the new mixture ek , are arbitrary sums of the energies of the old, m, and 

n : k =m +n .. Then he shows, or claims to, that if the  of the first 

mixture =  of the other mixture, their interaction produces no work, 

because the  of the combination will also not change. He also shows 

that 1/ is the integrating factor . The specific equation, which is easily 

seen to be the basic equation of thermodynamics in disguise, is 
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The expression on the left is the “free energy”. Substituting 

in previous formulae gives the classical form of the Partition 

function: 


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The free energy is given by 
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Thus: 

All of thermodynamics  comes from the Free Energy  

and the Partition Function. 

****************************************** 
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From Fermi’s Thermodynamics 

       Even the term “state” means different things in Thermodynamics 

and Statistical Mechanics.  The  equation of state  in Thermodynamics 

connects pressure, volume and temperature F(p,V,T) =0. The normal 

procedures is to make a Cartesian system of two of these variables, then 

draw isobars of the third variable, or some quantity compounded from 

them , “isothermals”, “isochrores”, etc.  

(1) homogenous system is mixture of several compounds, with a 

“global” equation of state. 

(2) A nonhomogenous system has several compounds each with its 

own state equation.  

(3) Systems with moving parts. In thermo (not in stat mech) one 

neglects the  kinetic energies of the moving parts. The values of these 

kinetic energies (see Schr) are the “states”. Thus, an infinity of “states” 

of molecular motion may correspond to a single thermodynamic state. 

Hence the origin of the ensemble approach of Gibbs.  
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Equilibrium “states”. Systems transform from an initial state to a 

final state through a continuous succession of infinitesimal intermediate 

states. This is the origin of all the headaches felt by physicists and 

mathematicians, albeit for different reasons.  

Example: reversible expansion of a gas. Enclose gas in cylinder with 

piston, raise or lower piston infinitely slowly! (Since the basic equation 

of Thermodynamics is a total indifferential  (hah!), this eliminates the 

pdV , or work term,  and just leaves the heat. 

Cycles. The work done by a cycle is the area enclosed in the loop, in 

the (p,V) plane in the Carnot process (lifting and lowering pistons, 

moving cylinders to infinite heat soruces at fixed temperatures) . 

For a “perfect dilute gas”, the equation of state is pV= (m/M)RT 

R is the “gas constant”= 8.314x107 erg/degrees = 1.986 Cal/degrees 

m is the number of grams of gas; M is the molecular weight of the 

element or chemical (e.g. water)  

A gram-mol is a weight whose numerical value, in grams, is equal to the 

molecular weight of the substance. Thus, m/M = 1 for any gram-mol.  
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Density  = m/V = pM/RT. For an isothermal expansion, one has dT=0, 

and  
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     In a mixture of gases, the partial pressure of a component is the 

pressure that this component would exert if it alone filled the container. 

Dalton’s Law: The pressure of a mixture of gases is the sum of its partial 

pressures 

*************************************** 

Georg Joos: Theory of Heat 

      The small calorie is the amount of heat required to raise the 

temperature of one gram of water from 14.5o to 15.5o Centigrade. The 

large calorie is the amount needed to raise 1 kilogram of water from 14.5o 

to 15.5o .  

    Specific heat: the amount of heat that raises a gram of a specific 

substance by 1 degree.  
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       Molecular heat : the amount that raises one mol of the substance by 

one degree.   

Okay: here is the basic calculation for finding the “intermediate heat” 

when quantities of two substances at different temperatures are brought 

together.  For example qs of substance S at temperature Ts is brought into 

content with qw of another substance at temperature Tw . If the specific 

heats of S and W are cs, then 
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“Heat transferred from one body equals heat absorbed by the receiving 

body” 

*********************************************** 

Back to Fermi: 

The First Law of Thermodynamics 

This is simply a restatement of the conservation of energy for 

thermal systems. The assumption is that the variation of energy must 

equal the amount of energy received from the external environment. 
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Hence the use of the minus sign –L, as the work “performed” by the 

system. If A and B are two states of a system, then –L = UB – UA is the 

work performed “by” the system, which is –the work “on the system. 

Work is a total differential, and path independent . 

An example of “two ways” of going from A to B (Water to Steam) 

1. Heat water on flame to raise temperature from A to B. The volume 

changes very little, and one says there is no “work” done on the 

system. 

2. Use rotating paddles on central to heat by friction. In this case 

mechanical work was used to keep the paddles moving. 

Example 2, basically the Carnot Cycle 

(1) S is a cylindrical container, perfectly insulated. Bring in  a 

moving piston. This changes the volume 

0



LU

LUUU AB
 

If the insulation is not perfect, QLU   is the amount of energy 

received by means other than mechanical work. It is a leap of speculation 
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for Boltzmann to claim that this comes from the agitation of molecules or 

atoms. For a “cyclic” transformation U = 0: “The work performed by the 

system equals the amount of heat absorbed by the system” That is the 

Carnot cycle. We can now derive the basic equations of 

Thermodynamics: 
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One can also take p and T as the independent variables. Then  
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Finally, one takes V and p to be independent variables. Then  
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Definitions:  Thermal Capacity is given by dQ/dT . There are two thermal 

capacities depending on whether heating is done under constant volume, 

or constant pressure: 
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Making Thermodynamics palatable to  the mathematician 

(1) Work, heat, entropy are quantities in transitions or transformations 

(2) Because they are measured in “equilibrium states”, they are 

presented as infinitesimals. This is the basis of thought experiments in 

which processes move with infinite slowness. (Call up Zeno!) 

(3) Basic equation is dQ=dU+pdV . - L is work done on the system, L is 

work done by the system. 

(4) dU and dV are total differentials in variables p,V, T. It is customary 
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to let V be the dependent variable, because p, T are active. V being a 

measure of empty space is treated as passive. 

(5) dQ is not a total differential. To evaluate the integral that calculates 

the quantity of dQ one must have a trajectory on the (p,T). Essentially 

one can then express both parts as a function of temperature.  

(6) 1/T is an integrating factor. Thus , S = dQ/T is a total differential. 

One relates U to T by the hypothesis, a quasi-theorem, that defines 

temperature as the particle average of the total energy. Then if 

(7) dQ/T = dU/T +fdV/V= NdU/U+kd(lnV)= d(lnUNVk) 

************************************************ 

       Page 164: Fermi’s derivation of all the properties of entropy, using 

the model of the Carnot cycle. All we need from this is the derivation of 

the fundamental integral (which figures in the H-theorem) 0
T

dQ
 

Fermi on Entropy , quote:  “In an isolated system, the statistically 

significant  transformations occur take the system to a state of higher 

probability”  
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       It is easily shown that the sum of entropies is given by the product of 

probabilities S = klnW . k = R/A = Gas Parameter/Avogadro’s Number  

Going back to our definitions of thermal capacity, if CV is fixed, then 

S=CVlnT + RlnV + a (constant of integration) = lnTCVVAk 

IF Cp is constant, we get  

 S=CplnT –RlnP +RlnR 

Putting these together, one derives the important formula 

p
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The van der Waals Equation 

      The ideal gas law pV = kT works well for high temperatures and low 

pressures, or high volumes. The van der Waals law is a correction for 

gases near their condensation points. It takes into account the size of the 

molecules and the cohesive forces between them.  

The gas law is modified as follows:  (p + a/V2)(V-b) = RT 
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a and b are characteristic coefficients for specific substances. b is a 

function of the size of the molecule, while a/V2 reflects the cohesive 

forces.  

       We look at the “critical point of inflection, C”, or so-called labile 

states of very high pressure before condensation sets in.  

******************************************************** 

Cedric Villani: “A review of mathematical topics in 

collisional kinetic theory” Handbook of Mathematical Fluid 

Dynamics (Vol. 1), edited by S. Friedlander and D. Serre, Elsevier 

Science (2002).pgs 71-305 
        The subject of Villani’s treatise is Collisional Kinetic Theory, a 

branch of Non-equilibrium Statistical Physics. It is based on a small 

number of famous mathematical models. There is more emphasis on 

methods and ideas than on results. Fully non-linear theories are more 

common  than perturbative approaches. 

Chapter 1 

The Distribution Function 

      “The object of kinetic theory is the modeling of a gas (or plasma) by a 

distribution function in the particle phase space” 
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      Single species of particles, non-quantum, non relativistic. The 

macroscopic variables are positions, the microscopic are velocities.  

Consider the gas to be contained in a domain X in 3-space, in a time 

interval (0,T).D= density =  f(t,x,v) is the distribution function. F is a 

function of bounded measure for any compact subset of X. In physical 

space, the domain is assumed to contain a finite amount of matter. 

There are two ways to interpret f 

(1) As an approximation of the true density in phase space 

(2) As a probabilistic strategy for dealing with  our lack of knowledge 

The Kinetic approach was created by Benoulli and Clausius long 

before the experimental evidence for the existence of atoms. 

The Fundamental Ansatz : 

ALL measurable macroscopic quantities can be derived from 

microscopic averages.  

( Comment: This doesn’t say anything about the causal 

mechanisms, how one gets from the molecules or atoms to the 
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measurable phenomena. Different pictures could give different 

results)  

Variables: x, t, v , T , density  . Then : 

 3
),,(

R
dxdtdvvxtf  

If x and t are fixed, this becomes an integral of the single variable ,v. 

We express the equipartition and conservation equations as follows. 

Let u be the fixed velocity, v the variable under the integral sign. Then 
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The “transport operator”. The assumption is that the “density” 

propagates without compression, expansion or change. This is, in 

essence, Liouville’s Theorem: f(t,x,v) =f(0, x-vt,v) x and v are of course 

abbreviations for 3-tuples. The total time derivative of f can be broken 

into a temporal part and a gradient: 
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The gradient part is what is known as the “transport operator”. If 

there is a macroscopic force, F, then this equation is given a 

Newtonian modification as:  

0



 fFfv

t
f

fD vxt
 

   Only binary collisions are considered: 3 or 4 particle collisions are 

considers too rare to bother with. The model used here will be that of 

“hard, elastic spheres” with radii r, nr2 ~1, nr3 < 1, where n is the number 

of particles .  

The 5 assumptions: 

(1) The gas is dilute 

(2)  Collisions are very brief events at very precise locations ,x .  

(3)   Collisions are assumed perfectly elastic. Therefore 

Velocities before collision 
'

*

' ,vv  

Velocities after collision *,vv  
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Then 
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 is the  “deflection angle”,  = sin

Everything is microreversible 

 Molecular chaos (Stoss-Zahl-Ansatz! ) “The velocities of 

particles before collision are uncorrelated” 

         When Boltzmann realized that it could not continue to apply after 

collisions, he invented the Ergodic hypothesis.  

 Using these 5 assumptions, Boltzmann derived the Quadratic 

Collision Operator, which we will write out in full: 
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As a general rule, the kernel, B, is not integrable. The flux term in 

f,which is a tensor product in probabilities, is allowed because  the 
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particles are uncorrelated before collision. Even though they are no 

longer uncorrelated after collision, Boltzmann continutes to use the same 

expression. This in essence is the Loschmidt objection.  

Here is how the 5 assumptions go into the integral and the theorem 

(1) Only binary collisions are assumed 

(2) t and x are treated as parameters, that is to say, the collisions are 

localized in time and space 

(3) Collisions are perfectly elastic, as required for the tensor product 

(4) The microreversibility is built into the structure of the kernel B 

(5) Stoss-Zahl-Ansatz 

Note that Df is linear, while Q(f,f) is non-linear 

Here Villani goes into a discussion of several traditional potentials that 

produce the kernel B. A general classification of collision kernels: 

A. Artificial collision kernels. No corresponding 

phenomenon in nature, but useful for making calculations 

B. Cut-off kernels. Replace kernel by another that is locally 

integrable 
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C. Variable hard spheres 

D. Condition of specular reflection (Fermat) 

E. Maxwell diffusion. A special Gaussian distribution found 

only at the wall 

F. Linearized Boltzmann equation, etc. 

          As for the physical validity of the H-Theorem equation, it works 

only in dilute atmospheres, for example aeronautics at high altitudes, or 

interactions in dilute plasmas.  

        Both Loschmidt and Poincare can be ignored in  an appropriately 

small box of phase space and time, (Comment: That’s like saying the 

earth is flat  provided one stays within a 2 block radius)  

      Although there are 3 kinds of kernels (hard spheres, oscillators and 

incompressible fluids), the mathematical theory has been developed only 

for the hard sphere case.  

     Harold Grad’s work  begins with Newton. His theorems were not 

shown to be consistent until 1972, by Cercignani. 
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The Harold Grad approach 

      Hard spheres of radius r. Billiard reflections, “symmetrical densities”: 

particles are ‘indiscernable though at a distance r from each other.” The 

Flow St on the hard spherical particles induces a “flow on the 

probabilities”.  Take the continuum limit n ∞, r ~√(1/n) 

Boltzmann –Grad assumption: f becomes continuous as the number of 

particles becomes sufficiently large. Also, as n goes to infinity, the 

motions of the particles becomes independent, t hat is to say, 

uncorrelated.  

      With these assumptions, one can show that the limit function of the 

process Pfn is a solution of the Boltzmann equation.   

Landford’s Theorem: This proves the Boltzmann equation and 

relations for very short time intervals and strong assumptions on the 

iterations Pkfn . These are: 

(i) F is “continuous” 

(ii) Gaussian type limits 

(iii) Uniform convergence of Pkf0n .  



48 
 

(iv) Chaos assumption 

The arguments are exceedingly vague. Notion of “most likely” 

distribution is basically the same as the Stoss-Zahl-Ansatz.  

   We say that z is “admissible” if ),(
1

1
i

n

i
iz vvxx

n
W  



  is a “good 

approximation to the density function f(x,v)dxdv. Then fn will be  

“arbitrarily close” to the tensor product  
nf 
in the sense of the “weak 

convergence of the marginals” . This condition is not sufficient to derive 

the Boltzmann equation.  

Then there is the “problem of the localization of collisions”  

Summarizing the mathematics: 

      Assume that ftn can be derived from f0n by transport under the 

mechanisms of microscopic dynamics. Let tn be a probability measure, 

with density ftn . Then, for all bounded, continuous f(x,v) on Rx3xRv3, we 

have : 0)),()(,(   dxdvvxfWvx tz

n

t   , where ft is the saolution 

to the Boltzman  equation  with initial f0 and the z operates only on the 
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“admissible points” . This means that “unlikely configurations” could 

lead to very bad approximations. (Landford 1973) 

*********************************************** 

From Stephen Brush: “The Kinetic Theory of Gases: An Anthology 

of Classic Physics” Imperial College Press 2003 
 

Outline of Boltzmann’s H-Function paper of 1872 

Boltzmann constructs the following integrals 
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By an (excessive!)  series of manipulations involving changes of 

variables and  integration by parts, which could certainly have been 

simplified and takes up many pages, Boltzmann arrives at: 
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     Note that the integrand is of the form  (X-Y)(lnX-lnY).  Assuming that 

the kernel is positive, this means that the integral will always be > 0 . 

Therefore the derivative will be positive, and the quantity D will always 

be increasing.  

Commentary 

Boltzmann therefore: 

(1) Identifies D with the entropy 

(2) Assumes that it rises to a maximum  

(3) That this will happen in finite time 

(4) Assumes that the integrand is continuous, and therefore that D 

is differentiable 

(5) Assumes that this maximum is stable, that is, there will not be 

jumps along the way 

(6) Assumes that the maximum is a finite number 

(7) Argues that the distribution at the unique critical point will be 

the Maxwell-Boltzmann distribution derived from the 

equipartition of energies. 
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Putting everything together: 
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**************************************** 

Brush Anthology, continued   

James-Clerk Maxwell papers of 1866-68 

     The assumption in these is that molecules behave like point centers of 

force mean values of various functions of velocities, and variations 

around these mean centers. Only collisions are considered, no external 

forces,  gravity, diffusion, etc.  

     “Now we know that in fluids the elasticity of form is evanescent, that 

of volume is considerable” He invokes a cardinal principle of elasticity 

“Forces caused by small changes in form are proportion to these caused 

by small changes in volume”. 
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      Gives up on a theory based on elasticity of stationary molecules, goes 

on to consider moving molecules. Dynamic theory: molecules oscillating 

around a fixed location.  

**************************************************** 

        Harvey R. Brown, Wayne Myrvold:  “Boltzmann’s H-Theorem, its 

limitations and the birth of (fully) statistic mechanics”.  

www.philsci-archive.pitt.edu/4187/ 

 

       Boltzmann’s 1872 H-Theorem paper  : Gas composed of hard 

spherical molecules. The container has perfectly elastic walls. Only 

binary collisions considered. To be precise: Boltzmann claims that he is 

working with perfect Euclidean points, but in fact the treatment uses 

hard elastic spheres.  

       Boltzmann’s Transport Equation. Assumes isotropic.  This means  

that 
t

f



 depends only on collisions that alter v.  

       Harvey Brown invokes a particular form of the Stoss-Zahl-Ansatz . 

This turns out to be equivalent to ),(),(),,( 2121 tvftvftvvF  where F 

is the density of those pairs of molecules which are destined to collide 

within the period (t, t+t). 

http://www.philsci-archive.pitt.edu/4187/
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The “H-functional” is defined as 

 vrddtvxftvxfH 
3),,(ln),,(  

Criticisms of Loschmidt, Poincare and Zernelo. 

       The consistency of the Boltzmann equation is at the heart of 

Lanford’s Theorem. Specifically, there are two possible ways to approach 

the evaluation of the Boltzmann equation, and Lanford questioned their 

equivalence: 

(1) Initial t. Let microstates of gas evolve according to classical 

mechanics. Then observe the final microstate and use this to 

determine the distribution function 

(2) Solve Boltzmann equation for the distribution function at the 

initial time t, and use this to determine the terminal microstate.  

(3) Models: Ehrenfest wind-tree 1912; Dog Flea 1907 

; Kac ring model 1959.  

****************************************************** 
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CHRONOLOGY 

     1874 Maxwell, Thomson and Tait recognize that the Boltzmann 

equation does not really “explain” time irreversibility” 

      1876: Loschmidt Umkehreinwand  

      1890: Boltzmann publishes articles in Nature 

     1894: Culverwell objections 

**************************************************************** 

Jos Uffink “The Boltzmann Equation and H-Theorem” 

www.pitp.phas.ubc.ca/confs/7pines2009/readings/Uffink.pdf) 

 

      Uffink points out that there is nothing in the original H-Theorem that 

guarantees that the gas will eventually reach its stationary or minimal 

value. It’s not certain that it shows that when it reaches this minimum it 

will stay there for an indefinite period.  

     1889 Poincaré. Classic paper:  No monotonically increasing function 

can be defined on coordinates of a system subject to Hamiltonian  

dynamics 

     1893 Poincaré: Criticism of Boltzmann and Helmholtz arguments 

http://www.pitp.phas.ubc.ca/confs/7pines2009/readings/Uffink.pdf
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1890 Zermelo “Wiederkehreimnwand” 

1893 Poincaré: “Irreversibility is in both the premises and the 

conclusion”  

       1898: Poincaré paper on the stability of the solar system. Uses a very 

strange argument: ” The planets give off heat that dissipates in space, and 

will therefore reach a Boltzmann equilibrium.”  

     1896 Zermelo: The stationary limit to which Boltzmann alludes cannot 

be stable, and is therefore not truly stationary. 

    In response to Zermelo and Loschmidt, Boltzmann endorses 

probability.  




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