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GEOMETRY 

 
Problem 1 

Convex sectors 
 

 Fix points A and B in the plane. For simplicity they may 

be placed on the  x-axis of a Cartesian reference frame . 

Connect them by two convex arcs  in the upper right-hand 

(+,+) quadrant , C1 and C2 .  (Figure 1)  

 

  

              Figure 1 

 

Assume that C1 and C2 intersect only in their mutual 

mid-point  , p .  This divides C1 into arcs of equal lengths u , 

and C2 into arcs of equal length v .  

   Let  be the two sectors formed between C1 and C2 

on the left, and C2 and C1 on the right. 

To Prove: Area  = Area  . 



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Double Intersection  
Projective Geometry 

Consider the family C of curves in polar coordinates: 

02,0
)sin(1

)(2 


 


 D
D

 

Problem 2: 
(i) Show that two curves S1, S2 with different values of D but 

identical values of , are parallel, i.e. non-intersecting. 

(ii) Show that two curves with differing values of always 

intersect in exactly two distinct points. 

(iii)  Show that through two points on the plane that do not 

rest on the same line emanating from the origin, there pass exactly 

two curves from the family C 

(iv) Analyse the properties of C in relationship to the related 

family C*  given by: 

02,0
)2cos(1

)(2 


 


 D
D

 





 
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Problem 3: 
A Generalized Pascal Theorem 

 

Let L  be any smooth, closed, convex loop with clockwise 

orientation  in the Euclidean or Projective Plane. ( Note that "convexity" 

is a projectively well defined concept by the Axioms of Projective 

Geometry.)The smoothness need only be C1 . That is to say, there must 

be  an unambiguous tangent at every point.  

 

                             

 

 

 

       Subdivide the arc of L into 6 half open segments, going clockwise, 

with the terminal point at the beginning of each segment, as shown in 

the above diagram . Label  these segments A, B, C, D, E and F. 
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 Theorem: 

  One can always find 6 points 

 pA A , pB  B ,   pC C , pD  D ,  pE E,  pF  F, such that the 

intersections: 

     X of tangents drawn at pA and pD ;  

    Y of tangents drawn at pB and pE ;  

    Z  of tangents drawn at pC and pF  

are collinear.  

Algebra 
 

Algebraic Integers on the Unit Circle 
Problem 4:  

Let P(z) be an irreducible  polynomial of degree n : 

 P(z)  (1)i aizni

i0

n

 . Suppose that: 

  (1) a0 = 1 .  

  (2) One of its roots (and its complex conjugate) is 

on the unit circle,  

 Prove :  

   For  n = 1,2,3,4,5 , P(z) is  a cyclotomic equation 

that is to say, all of its roots are roots of unity.  

 

Problem 5: 

 Show that this  property fails dramatically  for n = 6.  

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

 

 
 

Problem 6: 
 

Combinatorics of Semigroups 
Let E {e1,e2 ,e3} be a set of 3 elements under the 

action of  any arbitrary  binary groupoid operation:  

 

:EE E ,  (ei ,e j)  eij , 

  eij  being the table entry for the product of ei and ej . 

The table T {e11,e12 ,e13 ,. ...e33}  thus contains 9 entries.   

 Define:     k1 = number of instances  of e1 in T ;  

      k2 = number of instances  of e2 in T ;  

      k3 = number of instances  of e3 in T  

 Prove : 

  (i) If k1  2;k2  3;k3  4  , then (E ,)  cannot be 

a semigroup . 




 

Problem 7:  
Will any other partition of 9 =  k1+  k2 + k3  

produce  tables T, none of which are semigroups?  



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

Antigroups 
 

In the discussion that follows G is a finite group, A  an antigroup. 

 An  antigroup   is a subset A of a group G  such that no product xy 

of elements x and y in A is an element of A : 

 Definition:    A is an antigroup if (AG) (AA2 )  

A maximal   antigroup S is an antigroup such that if g is any element of 

G not in S, then the union of S and g, S'  S{g} will not be  an 

antigroup. 

 The product set A2 = AxA will  be designated   T  

 The set of inverses of elements of A  will be designated  R.  

 The set of elements q of G such that q2 is an element of A will be 

designated  V.  

 

Problem 8: 
Given S maximal , show that xS x1SS2 . Hence for S 

maximal, RSS2  

 

Problem 9, Decomposition Theorem: 

  Given S maximal , show that G  SS2S3V  

  We will say that A is a particular form of an antigroup designated 

as a  triduct  ( triple product set) if     AA2 ;A A3  

 

Problem 10:  
Show that when A is a triduct : 
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  (a) xA x1A  

  (b) A2 is a group  

  (c) B  AA2  is a group 

  (d) Show, in fact, that A2 is a normal subgroup of B, A is 

a coset of A2  , and that A contains an element k, with A = kA2 , and  

 k2 = e , the identity.  

 

Problem 11:  
Let Zk be the additive group modulo k 

  (i) List all integers k such that Zk contains one or more   

maximal antigroups of a single element.  

  (ii) List all integers k such that Zk has maximal antigroups of 

two elements.  

  (iii) Find  an integer j  such that  

   (a)  Zj   contains a maximal antigroup S of 2 elements.  

   (b) In the decomposition Z j  S S2  S3V  , V is 

non-vacuous. Show that there is only one such j . 




 
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

                         Analysis 
Problem 12:  
 

A Topology on Permutation Space  
  Let Z+ = the positive integers = (1,2,3,....) , and let S be 

the space of all automorphisms of Z+ . The elements of 

Scan be interpreted as permutations. For example,  the  

permutation that switches adjacent pairs 2n+1 and  2n  can be 

notated  = (21436587.....) , indicating  both a sequence  and a 

set of operations: " Move the first entry to the second place and 

the second entry to the first; move the fourth entry to the third 

place and the third entry to the fourth  ", etc. 

 S is a group. Let and   be two such permutations:  

 = (s1 , s2 , s3 , ..... )  

     = ( r1 , r2 , r3 .... )  

   Multiplication in S is defined as :   

 
:S  S  S
    (rs1

,rs2
, ....) . 

“The elements of  are the numbers of  indexed by the numbers 

in  . “ 

 The identity for this group is e = (123456789....) 

 "Leave everything where it is. "   

 We will now place a  topology on S via a map into 

infinite dimensional real Hilbert Space:  
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 :S  H;
 ( )   (s1,s2 , ....)  v H;

v  (2
s1
2 ,2

s2
2 ,2

s3
2 , ......)

 

 (A)  Define the norm of a vector u in H , as is normally 

done, as the square root of the sum of the squares of the 

components: 

u  (u1,u2,.....)

u  Norm(u)  u1
2 u2

2...
 

Problem 13:  
 Show that Norm    = 1  for  all  in S.  The image 

of S  in H will therefore be a subregion  of the unit sphere 

S∞ of H .  

 (B)  We can pull back the inner product  <u,v>  on H 

onto S to produce a functional  , from S to the positive 

real  numbers . 

 Definition:  If  S  , then  :S R  is given  by 

 ( )  e,()  2(
js j

2 )

j1



  

Problem 14:  
(i) Show that, for any two permutations and  

(1) (1)  

  Define the distance   D , between two permutations as  

  D(,)  1(1)  

 Show that:  

      (ii)  D(e, ) <1  for every permutation  .  
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              (iii) D(,)  1
2(() (), () ())  

     (iv) Given real numbers 0 <    < 1 , and  arbitrarily 

small, there exists a permutation  , such that : 

D(,e)    

 

Problem 15:  
 

A Curious  Infinite Product 
 Let x > 1   

 (i) Show that (1x
2n

2
)

n1



 
x 1

ln x
 

 (ii) Show furthermore that  

(1x
2n

2
)

n1



  (1x
3n x23n

3
)

n1



  

 (iii) Generalize . 

 

Problem 16:  
Self-Inverting Analytic Functions   

  Let  (z) , not identically zero,  be an analytic 

function over the complex plane, subject only to the condition 

that all its derivatives be uniformly bounded: 

 

 
dn(z)

dzn  A    
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 Show that there exists another analytic function (z ) , 

with (0) = -1 , such that the function: 

(z)  z(z2) z2(z2)  is self-inverting. That is :  

  (a) (0) = 0 

  (b)  ( (z))= z  in some neighborhood of the 

origin. 

 

Problem 17:  
An exotic differential equation 

  Designate by E the differential expression:   

E(z)  z2 f ' (z) (z1) f (z)1 

 (i) Determine the auxiliary solutions,   E = 1. 

 (ii) Show that , away from z=0 , E =0 has derivatives of all orders. 

 (iii) At  any k different from  0,  use the Maclaurin series to 

determine a solution of E =0  around k. Give the explicit form when k= 1 

 (iv) Setting z=0 in E,   one sees that if there is a solution at 0, then 

 f(0)=1. Is there an analytic  solution  at z=0 ? Give a formula for  its 

 derivatives there.  What is its radius of convergence?  

 (v) Why is the form of  f at k = 0 so different from that 

for k away from  0 ?   
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              Dynamical Systems 
 

A Linear Chaos Machine  
 This  dynamical system has the advantage over such things as the 

logistic function w  z(1 z) , or the function that generates the 

Mandelbrot Set z z2  c , that all of its parts are linear. In particular 

since there are no polynomials of degree >1, everything is real variable. 

The Chaos Machine operates  inside the real domain 0 < x < 1 , and has 

been carefully constructed so that fixed points, periodic cycles, inversion 

properties, etc., stand out  clearly.  
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 The Linear Chaos Machine M   has two branches.  

Define: 

 (x) 
l(x)  3x

2
; 0  x  1

2

r(x)  2(1 x); 1
2
 x  1





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The graph of M  appears above. The  line   y=x is included to help in the 

analysis of  its iterative properties: 

 Notation :   

 x  x(0); (x)  x(1); ((x)) x(2)...;(n)(x)  x(n)  

 An n-cycle is a sequence of distinct  iterates  such that x(n) = x: 

cn  (x(0)x(n) ,x(1),x(2),...,x(n1))  

An n-cycle is not the same as a periodic sequence of period n 

because of the requirement that all the iterates be distinct.  

Label the half-open interval [0, 1/2) as L,  the closed interval [1/2, 1] as R.  

 

Problem 18:  
 (i)  0 is obviously a fixed point of M . Locate the other fixed points.  

 (ii) Show that there are no 2-cycles in M .   

 (iii) Find all 3-cycles; all 4-cycles 

 (iv) Show that, for every n, the number of n-cycles is finite.  

 

Problem 19:  
Iteration of subsections 

 For this following problem it will be helpful to consult and even 

mark up the graph: 

 (i)   Find  F>0  in L  such that  (3)(F)  0 . Show that F is unique.  

 (ii) Find     in L  such that  (4)( )  0 . Show that  is unique. 

 (iii) Locate points s1 , s2 in L  such that  (5)(s1) (5)(s2)  0 . 

Show that they are the only solutions in L . Label the larger value  I.  
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 (iv) Label the non-zero fixed point as C . There is a unique number 

G such that G is different from  C ,  (G) C  . Find G. 

 (v) Show that: 

 

 

(1) [FI ] L; [FI ] R; (2)[FI ] R;
(2) [FI](2)[FI]  ;

(3)  (3)[FI]  [0, 1
2
];

(4) (4)[FI](2)[FI] [1
2
,1]

(5) (5)[FI ]  [0,1]

 

 (vi) Show that : 

 

(1)[ I,G] L;[I,G] R

(2) [G, 1
2
)  (2) (I,G]

(3) (6)[I,G] [0,1]
 

 

Problem 20:  
Symbolic Dynamics  

 Consider sequences of the form 

  S = A0A1.....Ak-1  , where  

  (i) A0 = L ; 

  (ii)  Aj = L (left)  or R (right)  . 1< j <  k-1 .  

 S will be called an iterative sequence  , or an iterative k-sequence  . 

Such sequences are central to the subject of symbolic dynamics.  

 The formula Ik (x) = S = (x)A0A1.....Ak-1  will mean 

xA0  L;(x)A1; (2)(x)A2;...(k1)(x)Ak1 

 S will be called an iterative sequence for x .  A number x satisfying  

 Ik (x) =S  will be called a solution of S, and the set of all solutions 

of S will be called the solution set, Q,  of S .  
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 Show that Q  is empty if there are any 'isolated R's' in the sequence, 

that is to say, sections of S of the form ...LRL .... 

 

Problem 21: 
 If S has no isolated R's, we will say that S is proper .  If 

(k)(x)  x , then the set of iterations of x form a  k cycle.  

(i) Show that S cannot be the sequence corresponding to a k- cycle 

if it terminates with Ak-2 = L , Ak-1 = R . A sequence in proper form with 

this added condition is said to be strictly proper .  

 (ii) If S is a given sequence of the above form and Q is its solution 

set, show that Q contains at most one  k-cycle  x   for which S is the 

corresponding iterative sequence.  

 

Problem 22: 
Fundamental Theorem  (Difficult)  

 Let S =S = A0.....Ak-1 be a strictly proper  iterative k-sequence. 

 ( For this theorem it is not required that  A0 = L ).  

  Let    be any  real number 0 <  < 3/4 

 Prove: There exists a number  , 0 <  < 1, such that  

(Ik() S) ((k)() ) 
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An Unusual Attractor 
 

Problem 23: 
Let Q be the set of all non-negative rational numbers. Define 

a function on Q as follows: if r is an element of Q, write it as r= p/q, 

where (p, q) =1, that is to say in lowest terms. Then the numerator 

function P is given by P(r) = p. Define a function  

)1()(1(

)(
)(

2

pq

p

rP

rP
rr





  

Let  (n) (r) be the nth iterate of j. Show that: 

q

p
rLrn

n

1
)()(lim





  





 
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Linear Algebra  

Problem 24: 
Factoring Polynomials Over Matrix Rings 

 We are interested in the decomposition of quadratic expressions of 

the form  

P(x,y)  x2  axybx cy  

over the ring M2 of all 2x2 matrices with real or complex entries, as a 

product of factors linear in the variables and with coefficients in  M2  .   

 In what follows, constants and variables taking real and complex 

values are identified with their value times the identity matrix. Thus 

x 
x 0
0 x




; P(x, y) 

P(x, y) 0
0 P(x, y)





 , etc.  

 The decomposition will then be of the form :  

x2 axy bxcy (x1y1)(x2y2)  

, where , are 2x2 matrices.  

 (i) What conditions on the coefficient a, b and c permit a 

factorization in which some or all of the matrices are non -singular? 

What are the corresponding matrices?  

 (ii) When these conditions are not present   will all be 

singular. What is the general solution?  

 (iii)  Without going into the details, can  you propose a method for 

factoring the general quadratic  

Q(x,y)  Ax2 By2 CxyDx EyF   over   M2  ? 
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Matrix Operators  
 Let A be an nxn matrix. A can be written either in terms of its rows 

as 

R1
R2
.
.
.
Rn





















 

 

 or in terms of its columns as: C1 C2 ... C4 , where 

 R1 = (a11  a12  a13 .... a1n )  , C1 =  (a11  a21  a31 .... an1 ), ... etc.  

 "Row operations" on matrixes are those permutations which switch 

rows with other rows, or columns with other columns. We introduce a 

new set of operators, "switching operators"  k , which switch the 

contents of row k with those of column k according to the scheme :  

k:Rk  Ck
aik  aki, i 1,2,3,...n

.  

 Unlike the row operations  these operators cannot be represented 

by matrices or matrix multiplication, but belong to a operator algebra 

isomorphic to  the symmetric group Sn2 on n2 objects .  

 For example, a typical 3x3 matrix can be represented as  

a11 a12 a13
a21 a22 a23
a31 a32 a33









.  
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Application of the operator 2 changes this to:  

 

a11 a21 a13
a12 a22 a32
a31 a23 a33









 

  

Problem 25: 
Show that , for n > 2 ,   no combination of row operations and 

switching operators can  interchanges a11 with a12 , all other entries 

being left  unchanged.   



 

 

 

Problem 26: 
 Given the nxn matrix A, let P(A) represent the operator that 

switches entries a11 and a12 , leaving all others unchanged.  

 (a) Verify that  the transpose operator,  PT(A) = (P(AT)) T 

will switch  a11 with a21 , leaving all other entries unchanged.  

 (b) Show that  :  

  (i) 
det P(A)

detPT (A1)
 (det A)2  

  (ii) Trace(PPT(A)) Trace(P(A))  

  (iii) Does this imply that Trace(PT(A)) Trace(A)  ? 

  (iv) Describe  the elements of the group   of operators 

  I, P, PT , etc.  
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Problem 27:  
  Give an informal argument to show that, by combining row 

operations and the operators P and PT , it is possible to switch any two 

entries alm , ars in A, leaving all others unchanged. Thus, row operations 

and the group   together generate the full symmetric group, Sn2  . 






