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Solutions I  

Problems 1-27 

Problem#1 :  
 What is depicted in the diagram is an exaggeration. In fact 

there is no such point p unless arcs C1 and C2 coincide. The arc u 

on the left must be longer than the arc v below it , because if one 

convex curve between 2 points lies entirely above another  relative 

to their mutual base it must be larger. Therefore the arc of C1 from 

A to p must be larger than the arc of C2 from A to p .  

 Think of a belt maintained tightly about one's waist. The 

only way to lift the belt away from the waist, ( without breaking or 

self-intersection), is by increasing its length. 

 However, for the same reason, the arc of C1 from p to B must 

be smaller than the arc of C2 from p to B.  Yet  one can't have both  

u > v , and u < v . Therefore u = v and arc C1 coincides with arc C2  . 

 It follows that  Area  = Area = 0   !  



Problem#2:  
(i) Obviously, at the intersection of two curves of C,  and  must 

coincide. If 1 = 2, then one must have D1 = D2.  
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Before carrying through the complete demonstration of (ii)  let us 

show how the dual character of the defining equation of C automatically 

results in the equivalent proof of (iii).  

 If, in equation C one replaces D by 1/D2, and  by –, it becomes: 
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The equation is completely symmetrical in D and , and in  and . 

This means that any theorem involving constant  and , (intersections), 

becomes a dual theorem involving constant D and  (lines). The 

geometry induced by C is therefore a projective geometry, in which two 

lines determine two points and two points determine two lines.  

 Without loss of generality one may consider the intersections of 

curves in C: 
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At their intersections these expressions are equal: 
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Re-arranging: 
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D is assumed to be positive. Therefore:  
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    Note that every value of the function sin (or sin) occurs 

twice in the interval 0 to 2, for all values of the argument except  =± 

/2, where the sin is 1 or -1.  It is clear that c > D; thus one cannot have 

D-1 = c; also D cannot be 0, or negative. Thus there are exactly two 
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solutions for all permissible values of D and .    is one of 

these solutions, then  is the other one. Thus: 
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(iv) One can first let D = 1,  = 0, then by rotation and similarity 

obtain all the other curves of C*. We compute: 
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Otherwise stated, the basic curve of C* is simply a vertical line through 

the value x = 2-1/2. C* coincides with the collection of all lines in the 

plane that don’t pass through the origin. 

As a final observation, the equation for the straight line can also be 

put into the form: 

1sin)(cos)(   BA  

Can something similar be done for the equation of the family C?  


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Problem 3: 
  Let L --> L  be a  continuous 1-1 function from L  onto itself, such 

that f (A) = B ,  f(B) = C,  ....... ,  f(E) = F,  f(F) = A  .  in other words, maps each 

segment clockwise onto the adjacent segment. Pick any point in A . Call it a  

Let b =  (a) ,  c =  (b) =  (a) , d =  (c) =  (a) , e =  (d) =  (a), 

f =  (e) =  (a)  , a =  (a). 

 Draw tangents at all  points a ... f ,  and identify the intersections X of 

tangents at a and d  , Y of tangents at b and e, Z of tangents at c and f.   

 Consider the triangle T formed by the vertices XYZ , with sides 

S1 = XY, S2 = XZ  , S3 = YZ . If these points are already collinear, we are 

finished. Otherwise ( see diagram) , we define a new function on L 

G( a,   , L ) =  G( a ) at the six points defined by a .....  f , as:   

  G(a ) == interior angle formed by  S1 and S2  

  G(b ) = = interior angle formed by  S1 and S3  

  G(c) = = interior angle formed by  S2 and S3  

  G(d) = = exterior angle formed by  S1 and S2  

  G(e) = = exterior angle formed by  S1 and S3  

  G(f ) == exterior angle formed by  S2 and S3 

 Now move the point a along L in a clockwise direction. As a  moves into 

each segment, the points b,c,d, etc. will move into distinct segments of their 

own. At no point x will  (x) be in the same segment as itself.  

 Ultimately  as a moves to d , the angle    must turn into  . Since G 

is continuous, a must reach  a point a*  at which    is equal to . At this point 

the intersections of the tangents will be collinear. This proves the theorem. 


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Problem#4:    
 The two solutions for n = 1 are obviously 1 and -1. It is easily seen that 

the solutions for n = 2 are all cyclotomic . If  is a root, then  , the complex 

conjugate is also a root, with  =1 . Let u = The irreducible equation 

for a is 



P(x) x2  ux1 . u must therefore be an integer. As it is equal to 

twice the real part of  , this must be an integer or a half integer. Since the 

absolute value of  is 1, the only possibilities are 0, ½ and - ½ , which 

correspond to i ,-i , and the cube roots of 1 and -1 .   

 The cases n = 4  is more interesting. The result follows immediately from 

Galois Theory, but we will not assume that the problem-solver knows this. 

Write the equation as 



P(x) x4 ux3 wx2  pxq 

Let the roots be designated . Let s =   

t =   Then (the calculations are simple)  

(i) s+t = u ,  

(ii) 1 + q +st=w, or st = w-q-1 , an integer. = k 

 It is now clear that s and t are the two roots of a quadratic equation with 

integer coefficients. Its solution is  



s, t 
u u2  4k

2
 

  Once again, s/2  isthe real part of  . The imaginary part is therefore given by 



r1,2  1 s2  The symmetrical form of equations (i) and (ii) implies that one 

could have taken t/2 as the real part of   . One therefore concludes that, if P is 

to be irreducible, all 4 roots are generated from the solutions to (i) and (ii). By 

assumption they are all complex, and the symmetries of the form of the 

solution guarantee that they all have absolute value of 1:   .  

 This immediately implies that u = p, and q=1.  
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 Note that by a simple change of variable from x to –x one can arrange 

that u is positive.  Since  is on the unit circle, the real part of  is less than 

one, and u is therefore less than 4. One therefore looks at the 4 cases u = 0,1,2,3 

. Let be the root given  by: 
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 From these equations one sees that |s| <2 and  4k < u2 . However, k may 

also assume negative values 

(i) u = 0 . Then ks  . The possibilities are k = 0,-1,-2,-3. 

Plugging these into the coefficients of P(x) produces the list: 

12

1

1

1

12

)(

24

24

4

24

24













xx

xx

x

xx

xx

xP

 

All of these are cyclotomic. 

(ii) u = 1. Then k = 0 and k=-1 are the only possibilities. k=0  
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gives the equation for the cube root of -1 . If k =-1 , then w = 1, and 

1)( 234  xxxxxP  , which is the equation for the 5th root of -1 .  

(iii) u = 2 . If k = 0 , a = 1 ; if k = 1 , a is the cube root of -1 ; if 

k = -1 , then the real part of a will be larger than 1 :  

1)21(
2

1
)442(

4

1
Re   

This possibility is therefore excluded. This completes the proof for n = 4. 

   The theorem is no longer true if one allows real values for the other roots 

and  of the 4h degree equation. A counter-example is worth a thousand 

words: 1525)( 234  xxxxxP  , which has roots: 
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Problem 5:  

 When n = 6 , one has the following result: 
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Theorem : Let 1)( 23456  uxvxwxvxuxxxP  be a symmetric 

equation, all of whose roots are complex. Then there is at least one pair of 

conjugate roots   on the unit circle.  

 The symmetry of the above form implies that when r is a root, 1/r will 

also be a root. If  is a complex root, then and are also roots. If b is 

not on the unit circle, then the remaining pair of conjugate roots ,  and  

must have the property that  . Q.E.D.  

Informally, one sees that among all the symmetric integral  equations of the 

6th degree, there must be many which are both irreducible, have only complex 

roots, and have one root , (and the other 3 which it generates) which are not on 

the unit circle. 

For example, one can start with the polynomial  R(x) = (x+1)6 . Let k be 

any positive integer, and add to R the polynomial A(x) = kx4 + kx2  . The 

polynomial R(x) + A(x) is always positive, hence has no real roots. As it is 

symmetric, it must have one conjugate pair on the unit circle. If it is not 

irreducible, it must be factorable by a cyclotomic quadratic, and one can safely 

assume that this will not be true for most k.  

 
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Problem 6: 
Assume that the entries in the table occur in the distribution 

2,3,4, and that  generates a semigroup. Then e1, e2, e3, can be 

represented by matrices, M1 , M2 , M3  .   

 If any one of these matrices is non-singular, then (E,  )  must 

have an identity, say  M1 . Then M2 and  M3 cannot both  be non-

singular, which implies  a group. Clearly the table of a 3-element 

group partitions as  3+3+3.  

 If M2   is  also non-singular, it must be the case that  ( M2  )2 =  

M1 . One sees  that in fact M2  cannot be non- singular. If:  

  M2 M3 = M2 .  

This implies that M3  = Identity =M1 .  

  M2 M3 = M1 .  

This implies that  M3 M2
1 M2   

  M2 M3 = M3. This partitions T as  2+2+5, since M3 , 

being the only singular element, must be an annihilator.    

 Therefore, there can be at most one non-singular element, 

which is the Identity. In that case  e11 = e1  is the only entry of e1 in 

the table , contrary to the requirement that there be at least 2 entries 

for each element. Therefore  M1 , M2 ,M3  are all singular .  

 None of these can be an annihilator, which would generate 5 

entries in the table. If there is no annihilator, then neither a row, 

nor a column, can be entirely filled with a single element. And if 

there is no non-singular element, one cannot have all elements e1 , 

e2, and e3 , in any row or column.  

 Only 4 possibilities remain consistent with the hypothesis: 
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 e1 e2 e3
e1 e1 e2 e2
e2 e3 e1 e3
e3 e3 e2 e3

 e1 e2 e3
e1 e3 e2 e3
e2 e3 e1 e3
e3 e2 e2 e1

 e1 e2 e3
e1 e1 e3 e3
e2 e2 e1 e2
e3 e2 e3 e2

 e1 e2 e3
e1 e2 e3 e2
e2 e2 e1 e2
e3 e3 e3 e1

 

  

None of these are semi-groups. 

 

Problem 7:  
 In fact, 2+3+4 is the only partition of 9 that is incompatible with a 

semigroup. One may find it enjoyable to  construct semigroup tables for each 

of the possible partitions of 9.  

Problem 8: 
 Suppose S is maximal and contains an element x,  xS  x1 S .   

Then S'  S{x1} is not an antigroup. Let u,v be elements of S. There are 5 

possibilities:  

(i) uv  x1

(ii) ux1  v u  vx
(iii) u1x  v x  uv
(iv) (x1)2  x1

(v) (x1)2  u

 

 (ii) and (iii) are ruled out since S is an antigroup and u,v,x are all in S,   

(v) is a variant of (i) as it implies (iv) x1  xu, x,uS  
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(iv) implies that x is the identity which cannot be a member of an antigroup. 

This leaves only (i) , so x-1 is a member of S2 .  

 

Problem 9: 
 From the above  we know that u,vSu1v, uv1S3 

Let g be any element of G which is not in S. Since S is maximal, there are these 

alternatives : 

(i) uv  g gS2

(ii) ug  v g  u1vS3

(iii) gu  v g  vu1 S3

(iv) g2 S gV

 

 These match all the sets in the proposed decomposition. 

 

 Problem 10 : 

  (a) Let u,v,xA;(x)  xuv . As x moves through all elements of A, 

so does F(x) . There must therefore be an element y, such that 

yuv=v . Therefore y =u-1 .  

 (b) Choose a, b  , a=uv, b=wz, with u,v, w,z A . 

Then ab = uvwz= (uvw)z =tz , where t is also an element of A. Therefore 

ab  A2.  

 Since, by (a), A contains all of its inverses, so does A2 , which also 

contains the identity, and is therefore a group.  

 (c) It is clear that any product of elements of B  A A2must remain in 

B, which also contains all its inverses and the identity 

(d) It is obvious that A2 is normal in B . Let  be any element of A. Then   

 A =  A2  . By a classic theorem of group theory, one can find an element k in 

A such that a2 = e .  
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Problem 11: 
  (1)  Z2   ,  Z3 ,  Z4   .  

 (2)  Z5  to   Z9   .  

 (3) k = 9 ; S = { 2,3 } ; S2 = {4,5,6}  ; S3 = {7, 8, 6, 0) ; V = {1} 

 

Problem 12: 
  The Norm is computed  by squaring each of the entries  

in adding them together and taking the positive square root. 

Since each positive integer , (multiplied by -1/2 ) occurs in the 

exponent of 2,  once and only once in any arrangement of  , the 

sum of the squares will always add up to 1.  

 

Problem 13:  
  Observe that the  inner product   ( -1)   is symmetric in the 

entries. In fact: 

  (1)  2(
siri

2 )

i1



  (1)  

 Note:  this is not   the same as   ! 

 

Problem 14:  
    (i)   ( e, )  is never equal to 0  for any permutation   . 

However it can be made as small as one likes by pushing a long 

sequence of integers 1,2,...N at the beginning of the identity, e,  

very far out on the sequence, then bringing down to the beginning 

a collection of integers  on e which are even further away . In this 
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way the sum si +ri may be kept above any pre-assigned number N, 

and will  be reduced accordingly.  

 (ii) Using the bilinearity of the inner product, one can 

multiply out the expression for D under the square root and 

confirm the expression presented in the problem.  

 (iii) The method for doing this is  in the solution to (i) 

 

Problem 15: 

 First Solution :   Begin  with the identity, 

1 x
1
2 

1 x

1 x
1
2

 

 

Replacing  the first term of the  infinite product  gives : 

 

1 x

1 x
1
2


1 x

1
4

2
.... (1 x) 1

22
(1 x

1
4 )

(1 x
1
4
) (1 x

1
4
)

' ...

 (1 x) 1
23

(1 x
1
8 )

(1 x
1
8) (1 x

1
8 )

' ' ......etc.

 

 After k steps, what remains of the infinite product will 

converge to 1.  The expression to its left has the form: 

 

Ek  (1 x )
1
2k

1

(1 x
1

2k
)

 

Now, 
k
lim

1
2k

1 x
1

2k


z0
lim

z

1 x z
  ln x  , by L'Hôpital's Rule.  

Finally, 
1 x

 ln x

x 1

ln x
            Q.E.D.  
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 Second Solution  :  

Let Jk (x)  (1x
2n

2
)

n1

k

   

One can multiply through all the factors of this product and 

express  the result as a sum of the form:   

 

Jk (x) 
1

2k
x


 , 

where    is a real number ranging over all finite binary decimals   of 

the form   
1

2r1

1

2r2
...

1

2rk
, 0  ri  k . 

 As there are 2k such combinations, as   k --> ∞  this assumes 

the  form of a Riemann sum   ,  with differential incrementy= 1/2k  

, and the function f(y) =xy under the integral sign. The infinite 

product can therefore be replaced  by an integral  

(..)
1



  xydy 
0

1
 ey ln xdy 

0

1


x 1

ln x
  (!) 

 

 (ii)  One uses the familiar identity:  

1 xkn  x2kn ...x(k1)kn 
xkn1 1

xk n1
 

 (iii) The same trick used in Solution I can therefore be 

applied to all exponents k .  

 By recognizing that the exponents of the corresponding sum 

eventually yield , or lead in the limit, to the base n decimal 

representations of all the real numbers in the interval (0,1) , one can 

also employ  the methods of the 2nd Solution 
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Problem 16:  
  Look at the properties of a self-inverting analytic 

function  

(z) 
an
n!n1



 zn .  

The  even coefficients  of   will appear in z2 (z2) ,  the odd 

coefficients in z(z2)  Since (0) = -1 ,   a1 = -1 .   

 Let g(z) = ((z)) = z. Then g'(0) = y''  where  

y' 
d
dz ;' 

dg
d 

d((z))
d  

 Since (0)=0, these two derivatives coincide at 0 , or  

d
dz|z0


dg
d |z0

 a1  1 

 Therefore g'(0) = =(a1)2 = +1 . Calculating  the first few 

derivatives of g, recalling that, at 0, the value of (i) coincides with 

that of y(i) :  

g'' (0)  y''' (y' )2' '  a1a2  a1
2a2  a1a2(1 a1) 0 

 Since  a1 = -1 by hypothesis.  a2  may be freely chosen.   

 
g'' ' (0)  y' ' ' ' y' ' y' ' ' 2y' y' ' ' ' (y' )3' ' '
 a3a1  3a1a2

2  a
1
3a3  a1(a3  3a2

2  a
1
2a3)

 

Since a1 = -1 , it follows that a3   3
2
a2
2

. We will show, in 

general, that all of the even indexed  coefficients may be chosen 

arbitrarily, while the odd indexed coefficients may be calculated as 

functions of those of lower index.  ( The requirement that the 

derivatives of  be uniformly bounded has been posited only to 

assure convergence of . )  

 Write the general expression for the derivatives of g as:  



17 

 

g(n) (z) Pi(y' , y' ' , ...y(n)) (i)(z)
in
  ,  

the Pi being polynomials in the derivatives . An easy induction  

shows that this expression is of the form  

g(n) (z) y(n)' (z) [.......] (y' )n (n) (z) .  

At z = 0, this reduces to 

 
g(n) (z) ana1  [...... .] (a1)nan
 a1an(1 a1

n1) [.. .....]
 

 The left-hand  part of the right side of the equation is  0 when 

n is even; hence an , n = 2j may be freely chosen.  

 It is equal to -2an  when n = 2j+1 . Since an does not occur in 

the bracketed expression, and since g(n)(z) = 0 for all n except 1  

 ( because  is self-inverting ) , one can use the above  equation to 

compute the value of a2j+1 in terms of the previous a's . This shows 

that the coefficients of  can be completely calculated from those of 

   .Establishing convergence of   :  

  (1) The number of terms in the expression for g(n) (z) is 

easily seen to be less than or equal to n! .  

(2) The total exponent of each monomial in g(n) (z)  is less than or 

equal to An+1 , where A is the uniform upper bound on the 

derivatives. Therefore    

 

(z) 
j!A j1z j

j!j2k1

8

 
A

1 Az
 

and  converges for |z| < 1/A  

 Note : When the derivatives of  are not uniformly bounded, 

one can still construct  , but  it must be checked for convergence. 
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For example, if an = -1 , for all even n, then an = -1 for all n, and is 

the function:   

(z)  z  z2  z3...
z

z 1
 

 which is self-inverting. 

 However, if an = +1 for all even n, then (z) will diverge.  

 

Problem 17: 
We are asked to describe all analytic solutions to  the differential 

equation: 

E(z)  z2 f ' (z) (z1) f (z)1 0   

 (i) Deleting the constant term 1 yields the auxiliary equation 

A: z2 f ' (z) (z 1) f (z) 0
f '

f

1 z

z2

1

z2

1

z

 

 This readily integrates into  

ln f  
1

z
 ln z  k

f  ek ze 1z  cze1z
  

 The auxiliary solution may be adjoined to any solution convergent in a 

circle around a point away from the origin, to produce a 1-parameter family of 

solutions.  

 (ii) Successive differentiations of E(z)  = 0  produces the recursions 

f ' 
(1 z) f 1

z2

f '' 
 f  (3z 1) f '

z2
,etc...
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 This shows that if there is a solution f at any point away from 0, then 

derivatives exist of all degrees. This suggests expanding f in a MacLaurin 

series at points k other than 0.  Let k be any number, real or complex , other 

than 0 . Substituting  g(z ) = f(z - k )  in  E , one derives : 

E(z,k)  (z k)2g' (z) (z1 k)g(z)1 0 

 (iii) The MacLaurin Series for f around - k  is the same as the Taylor's 

Series for g around 0. Write  g(z)  anzn

n0



  and substitute in E(z,k) : 

g(z)  anzn

n0



  a0  anzn

n1





g' (z)  nanzn1

n1





z2g' (z)  nanzn1

n1





2zkg' (z)   2knanzn

n1





k2g' (z)  k2nanzn1

n1





zg (z)  anzn1

n1





kg(z)   kanzn

n1





g(z)   anzn

n1





1 1

 

 Taking the sum, grouping coefficients by powers of z and setting the 

whole equal to 0 leads to the recursion 
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(n 1)an  (2kn 3k 1)an1  k2(n 2)an2  0  

or 

an2 
(n1)an (2kn3k 1)an1

k2(n2)
 

 a0 and a1 are connected by E(z, k) , through setting z = 0 

k2a1  (1 k)a0 1 0,

a1 
(1 k)a0 1

k2
 

 The remaining coefficients can be determined from the recursion. Since 

both numerator and denominator are linear in n, as long as k  ≠ 0, the 

coefficients will grow on the order of  O((3k )
2n)  or less , guaranteeing a 

positive radius of convegence.  

(iv) The coefficients take a particularly simple form when k = 1, and the 

circle of convergence is around the point (-1,0) in the complex plane: 

an2 
(n1)an  (2n 4)an1

(n 2)

 2an1 
n 1

n 2
an

 

 We have a surprise in store for us when k is set equal to 0. First multiply 

both sides in the recursion formula by k2 , then let k go to 0. The result is:  

an1  (n1)an  

 Setting a1 = 1, the formula for f becomes: 

f (z)  n!zn

n0



    (!)  

This diverges everywhere except at z = 0, f(0) = 1 . At 0. f  has derivatives of all 

orders: f (n)(0)  (n!)2 . This function can therefore be characterized as an 

analytic function around the origin with radius of convergence R = 0.  
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Plugging the above formula into E , one sees that it does indeed constitute a 

"formal" solution to this differential equation.  

(v) For any point k on the complex plane away from 

the origin, the radius of convergence excludes the origin, and 

shrinks to nothing as k approaches the origin. As the recursion 

formula allows a0 to be freely chosen , one can set it to 1. Then the 

solutions to E(-k) around k will move continuously to the origin 

even as the domain of convergence shrinks to a point. 
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Problem 18:  
 (i) fix1 = 0 , fix2 = 2/3 .   Clearly, given any 0< y</12 , l (l (y)) =9/4y cannot 

equal y, unless y = 0 , which is a fixed point, not a 2-cycle 

 Likewise r(r(y)) = y = 4y-2 , or y = 2/3 . This is the other fixed point 

 r(l (y)) = y = 2(1-3y/2) = 2-3y , or y = 1/2 . In this case y cannot be an 

argument for l  . in fact 1/2 -->1-->0 , and can hardly be considered a two-cycle 

 (ii) Finally l (r(y)) = 0 = 3/2(2(1-y)=y = 3-3y , or y = 3/4 . However, under 

the action of  , 3/4 --> 1/2 --> 1 -->0  

 This shows that the the Linear Chaos Machine has no 2-cycles.  

 (iii)   = 2/5 --> 3/5 --> 4/5 --> 2/5 is the only 3 cycle, corresponding to 

action by the iterate function r(r(l ( ))) =  Examining the other iterate 

possbilities shows that this is the only one.  

 There are two 4-cycles: 

 C1 =1/4 --> 3/8--> 9/16 --> 7/8 --> 1/4  

 C2 = 9/13 --> 8/13 --> 10/13 --> 6/13 --> 9/13  

 (iv) Each n-cycle corresponds to a solution of the fixed point equation for 

some combination of l -functions and r-functions in sequence.  Since the 

Chaos Machine is linear, all n-cycle equations are linear, of the form qx+t=x, q  

≠ 0 ,  with unique solutions x = -t/(q-1) .  

 Problem 18: 
 (i) F = 1/3 . Any value between O and F will remain on the right branch 

after 3 iterations. Any value larger than F will go beyond 0 in the return swing 

produced by the 3rd iteration. The situation is made plain by the graph.  

 (ii) Since F cycles to 0 in 3 iterations,  (2/3)F = 2/9 will cycle to 0 in 4 

iterations. Uniqueness is easily established. 
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 (iii) I = 5/12  is the larger value. The smaller one is the second inverse 

iteration from F = 2/3 x 2/3 x1/3 = 4/27 .  

 (iv)  C = 2/3 ; G = 4/9   

 (v) Follow the trajectories on the above diagram. Note that,  under the 

action of :  

  [FI]  inverts   into [AB]  ; [1/3, 5/12] --> [1/2 , 5/8 ] 

  [AB] rotates   to [DE] ; [ 1/2 , 5/8 ] --> [3/4 ,1] 

  [DE] jumps across  to the entire left branch [O,H), plus the 

 isolated point A = (1/2 , 1 ).  

  [OH) iterates into itself   plus  the segment [A,D) . A final 

 iteration covers the entire domain [0,1] .  

 (vi) Observe how [IG] inverts into [C J] ; [GH] inverts into [C,D] ; [C,J] 

rotates into [B,C] ; [BC] rotates into [C, D] ; [CD] rotates into [CA] ; [CA] rotates 

into [CE] ;  [C,E] both rotates into [AC] and jumps across to [O,A) . 

 A final iteration covers the entire domain [0,1] . 

 

Problem 20: 
 (a) A  transition ( by application of l)   from x  L to y R implies that 2/3 

>  y > 1/2 >  x . Therefore one application of r is needed to bring y down to or 

below the fixed point , and one or more after that to produce a value z < 1/2  

L .  

 Therefore a segment of the form ..LRL .. never occurs in the iterate 

sequence produced by any x in the domain [0,1] .  

Problem 21: 
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 (i) The iterate sequence of a periodic cycle is equivalent to any of its 

cyclic shifts : LLR ~ LRL ~ RLL,  etc. Since the second of these is improper, 

they are all improper.   

 (ii) The Chaos Machine M  is linear. After n-iterations a sequence  

S(x)  = (x)S = A0A1.....Ak-1    is produced, which, if it is a cycle, will be equal to 

x . The final equation with be of the form  qx+t=x, q  ≠ 0 ,  with unique   

solution   x = -t/(q-1) . See also problem 28.  

Of course not every iterate sequence corresponds to a cycle.  

 

Problem 22:   

  If 0    3
4 , there will be two "inverses" ,   which iterate to   , 

 in L,  in    R . If, however 
3
4
  1,   will have only one inverse,  , 

which is in R . In setting up the chain of back-reconstructions,  these 

conditions are precisely those required for any  sequence from  forwards to  

be strictly proper.   

Example :   Let  = 1/3 . The chain of back-iterations begins with: 

 

 

 The chain can be extended indefinitely. Any any stage k , by 

advancing along all possible paths back to 1/3 , one produces all 

1/3
L R

R

RL

L

L R

R

R

17/247/18

2/9

8/9

4/27

5/9

7/12

5/6

25/278/81
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possible strictly proper iterate sequences. For example, the 

sequence corresponding to 7/18 is LRR , which is the function y 

=r(r(l (x))) =  6x - 2 . Substituting gives 6(7/18) - 2 = 1/3 . 

 

Problem 23: 
Since the numerator and denominator of (r) are already in lowest 

terms, the first iteration of is:  
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The nth iteration of this formula extends it to: 
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To evaluate this product, notice that when the multiplications are 

performed, the exponents of p will be all of the positive integers, 

expressed in the binary system, up to the exponent 

2n+1 -1. Therefore: 

)(!
1

)
1

1

1
(

1

.....
111

1(

1
)(lim

32

)(

q

p

p

q

p

ppp

rrn

n














 

Problem 24:  
(i) Let: 

  

I 
1 0
0 1




;1,2 ,1,2 M2  

Then one  may write :  

 

P(x,y)  x2  axy bx  cy  ( Ix 1y1)( Ix 2y2)
 x2  xy(1 2) x(1 2)12y2  y12 12)12

Identifying terms on both sides of the equation:  
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(i)12  0
(ii)12  0
(iii)1 2  aI;2  aI 1
(iv)1 2  bI;2  bI  1
(v)12  12  cI

 

Substituting (iii) and (iv) into (i) and (ii) :  

 
1(aI  2 )  0
1(bI 2)  0

 

Write 1 and1 in terms of their entries, to be determined: 

 

1 
r1 r2
r3 r4






;1 

s1 s2
s3 s4







 

 

Despite the absence of a term in y2  , the relations (i) - (v) are symmetric 

in the 's and  's,while relations (i) - (iv) are  symmetric in the indices 1 and 2 

Looking first at the 's  :  

 

0  12  1(aI 1) 
r1 r2
r3 r4







a  r1 r2
r3 a  r4







(vi) r1a  r1
2  r2r3  0

(vii)  r1r2  ar2  r2r4  0
(viii) ar3  r1r3  r3r4  0

(ix)  r2r3  ar4  r2
4  0

 

Simple algebraic manipulations  yield: 

 

r2(a  (r1  r4 ))  0
r3(a  (r1  r4))  0

 

Case 1 :  r2=r3= 0 ; r1+r4  need not equal  a .  
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Case2 :    r1+r4  = a 

 Case 1 :  

  From equations (vi) and (ix) one sees that: 

r1a  r1
2; r4a  r4

2

[(r1  a) (r1  0)][(r4  a)(r4  0)]
 

For Case I therefore, the choices for the matrices  1 , 2   are distributed 

among:  
a 0
0 a




,
0 0
0 a




,
a 0
0 0




,
0 0
0 0




; 

  1 
a 0
0 a




2 

0 0
0 0




 .  

Staying with this option for the moment, substitute into equation (v) : 

12 12  c  a2
2  (

c
a)I

 

The symmetry relations allow us to also write: 

2  bI; 1  0 . Therefore  b= c/a . We have shown that:  

 

(i)  Theorem I :   b = c/a is the condition for having non-singular matrices 

in the decomposition of P(x,y) into linear factors over M2  .    

(ii) The other possibility in the Case 1 option is :  

1 
a 0
0 0




;2 

0 0
0 a




 

 

; or the reverse. Substituting into (v):  

 

a 0
0 0





b  s1 s2
s3 b  s4







s1 s2
s3 s4






0 0
0 a






c 0
0 c







a(b  s1) 0
0 as4






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Therefore:  

ab  as1  c; as4  c;

s1 
ab  c

a
; s4 

c

a
;

s1  s4  b  

 

 It has been  shown that :  

Theorem II :   If the r's are in Case 1,  then the s's are in Case 2. If the s's are in 

Case 1,  the r's are in Case 2  .  

 We have not yet looked at Case 2.  

 Case 2 :     If the 's satisfy the relation of Case 2 , then we may compute 

the values of the r's in terms of any one of them from the basic relations:  

r1  r4  a

r1a  r1
2  r2r3

r4a  r4
2  r2r3

  

r1 and r4 are the two roots of the quadratic equation: 

 

2  a  r2r3  0;

r1, r4 
a a24r2r3

2
;

r1r4  r2r3

 

  

Likewise , if the 's are in the Case 2, one has  

 

s1  s4  b
s1s4  s2s3

 

Theorem III : If the 's are in Case 1,  then the 's are in Case 2 , with these 

values ( up to symmetry): 
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1 
a 0
0 0




;2 

0 0
0 a




;

s1 
ab  c

a
; s4 

c

a
;

s2s3  s1s4 
c

a
(
ab  c

a
) 
abc  c2

a2

 

s2 ( or s3 ) can be arbitrary. All other values are uniquely determined.  

Likewise, if the 's are in Case 1 : 

 

1 
a 0
0 0




;2 

0 0
0 a




;

r1 
ab  c

b
; r3 

c

b
;

r2r3  r1r4 
c

b
(
ab  c

b
) 
abc  c2

b2

 

 The only remaining question is: are there solutions for which both the 

's and  the 's are in Case 2 ? The conditions are: 

r1  r4  a; s1  s4  b
r1r4  r2r3; s1s4  s2s3

 

 Substituting in relation (v) : 

c 0
0 c




 

r1 r2
r3 r4






b  s1 s2
s3 b  s4







s1 s2
s3 s4






a r1 r2
r3 a r4





  

This translates into four equations: 

E1:br1  as1  2r1s1  (r2s3  r3s2 )  c
E2:br4  as4  2r4s4  (r2s3  r3s2 )  c
E3:br3  as3  (r3s1  r1s3  r3s4  r4s3)  0
E4:br2  as2  (r2s1  r1s2  r2s4  r4s2 )  0

 

Subtracting E2 from E1 and wading through the computations one ends up 

with the equations 
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E5:as1  br1  r1s1  ab
E5:as4  br4  r4s4  ab

 

 

In combination with the conditions : r1r4  a; s1 s4  b , the other 

equations turn out to be identities. Therefore we know that 

 

s1(a  r1)  ab  r1b  b(a  r1)
s1r4  br4

 

 If s2 = 0 , then the a's are in Case 1. If r4 ≠ 0 , then  divide through to 

derive s1 = b , and the s's are in Case 1 ! Likewise for r2 = 0, s4 ≠ 0   

 Theorem IV : The r's are in Case 1 IF AND ONLY IF the s's are in Case 2. 

The s's are in Case 1 IF AND ONLY IF the r's are in Case 2  .  

 This is the general solution, covering both singular and non-singular 

factorizations. 

 Note :   When ab = c, P(x,y) factors as   P(x,y) = (x+ay)(x+b) .  

 (iii ) Factoring the general quadratic equation in 2 variables can always 

be done in terms of quaternions i,j,k . Since for any 3 linear forms (Ax+By+C) 

in x and y, T1 , T2 , T3 one has  

T1
2 T2

2 T3
2  (iT1  jT2 kT3)(iT1  jT2 kT3)  

one can readily put any quadratic form F into the form of a sum  

squares of 3 linear forms . This is known as the Inertia Theorem 

and is extensively used in Differential Geometry. 
Problem 25:  

We will construct a set of numbers SR derived from the indices,   

that will be invariant under row operations and switching operations. Observe 

that if:  

Rj  aj1 aj2 ajn , 
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then the sum of all the indices of all of its entries is given by: 

 

( j 1) ( j 2)...( j n)  n( j  n1
2
)  r j  

Calculating this figure for each j produces a set of numbers:  

 

SR  (r1,r2,...,r j ,...,rn) .  

The corresponding set of numbers for the columns SC is identical. 

 Theorem:   

   Neither row operations nor switching operations alter the content 

of SR or SC . Since row operations merely permute the order of rows or 

columns, and that of the elements within them,  without altering their content, 

this part is clear. The switching operations j are all of the form  

aij a ji ,i 1,2,...,n , which does not alter the sum i+j that goes into the 

corresponding entries in SR or SC .  

 Consider now what happens when a11 and a12 are switched. The sum of 

all the indices in C1 becomes  

s1  (1 2) (2 1)...(N 1)

 n(1 n1
2
)1  

 It is evident that this cannot be any of the entries in SC before these 

terms were interchanged; for one thing, the difference of any two elements of 

SC is divisable by n, but subtracting the above from sj for example, produces 

the number n(j-1) -1 . Q.E.D.  

Problem 26:   
 (i) A = { aij } , i,j = 1,2,....,n 

We can expand det A in terms of its co-factors in two ways 
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(a) detA  a11M11  a12M12...a1nM1n
(b)det A  a11M11 a21M21...an1Mn1

 

 Since the operator P(A) only affects the top row of A, the co-factors  of 

expansion (a) are unchanged by it , and one can write: 

 

detP(A)  a21M11a11M12...a1nM1n  

 Likewise, the transpose inverse of A,  B = (AT )-1 , has entries 

 

bij 
Mij

det A
 

Therefore: 

detP((AT )1)  detT(P((AT )1)
 detPT (A1)

 (
a21

detA
)
M11

det A
 (
a11

det A
)
M12

det A
. ..(

a1n

detA
)(
M1n

detA
)

a21M11 a11M21. ..an1Mn1

(det A)2


detP(A)

(det A)2


detP(A)

detPT (A1)
 (detA)2

 

 (ii) Trace PPT(A) begins with the entries a12 + a22  .  Trace P(A) also 

begins with these entries . Since these operators only affect entries a11 ,  a12 , 

and a21 , the rest of the trace is left unaltered. The result follows 
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(iv) P cannot be cancelled from both sides in this equation, 

because P acts like a function on different matrices on the 

left and the right. 

(v) Problem 27:  Left as an exercise for the reader!  

 


