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Solutions II  

Problems 28-50 

Problem 28: 
  (i), (ii) : The tables for  and  and  or   in the 

Possibility Logic W  , are : 

 

 

T F P
T T F P
F F F F
P P F P

T F P
T T T T
F T F P
P T P P

 

  (iii) Inspection shows that they are commutative 

and reflexive. Associativity follows from the associativity of 

the normal set theory operations.   

 

Problem 29:  
  (iv) The matrix representation is: 

 

 T
1 0 0
0 1 0
0 0 1

;F
0 1 0
0 1 0
0 1 0

;P
0 0 1
0 1 0
0 0 1

 

 

  (v) The crucial observation here is that W has 3 

idempotents for both its operations , and no Boolean Algebra  
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with 3 idempotents can be embedded into a modular 

arithmetic Zk for any k . 

  If a is a typical idempotent element of W , then 

one wants  

a a a a (a)2 a(modk)  

 Since P P ,  there must be an integer p in Zk with  

 

p(p 1) 0(mod k)
1 p p(mod k),or 2p 1   

 Therefore   (1)   2p-1 = rk  ,  

   (2) p2 - p = sk,   for some integers r and s . 

From the first equation we see that  2 cannot divide k, and p  

cannot divide. k. Hence (p,k) = 1. But this means that, from 

the second equation, k must divide p-1 . So k cannot divide p 

+ (p-1) = 2p-1 , contradicting the first equation.  Q.E.D.  

 

Problem 30: 
(i) The number of geodesics on a cylinder passing through 

two points on the same horizontal generator is infinite. Each of 

them is a helix on the surface in 3-space. When the cylinder is 

flattened out, these become a collection of straight line segments 

with slope L/n, where n is the number of loops performed by the 

helix. 1. The distance traveled along each segment is the 

                                                
1
 We’ve all seen those performing helices at carnivals! 
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hypotenuse of the triangle formed by a right triangle with vertical 

length 1 (that of the circumference) and horizontal length L/n.  

22

2

2 1
1 Ln

nn

L
dn

 

The number of segments is n. Therefore the total length 

traversed by a light ray on a geodesic helix with n loops is 

22 Ln  

The inverse square of this is
22

1

Ln
. . Since the ray may wrap 

around the cylinder from in both clockwise and counterclockwise 

orientations, this should be multiplied by 2. One therefore obtains 

the total intensity received at O by adding up the contribution of 

each geodesic. The result is: 

1
22

02
)(

n Ln

I
OI    

, where  is a conversion constant depending on the units chosen .  

 (ii)   Rewrite the above formula as: 

1
22

02
)(

n Ln

L

L

I
OI  

The assertion now follows from the lemma: 
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Lemma:  

)(!
2

lim
1

22
n

n Ln

L
 

Proof:  

 Consider the integral: 

2
|)(tan 0

1

0

22 L

x

Lx

Ldx
J  

That this is equal to the infinite sum above can be seen from 

the chain of inequalities:  

...
)1(

1

2222

1

2222

n

n

n

n Lx

Ldx

Ln

L

Lx

Ldx

Ln

L
 

The partial sums are squeezed between the partial integrals that 

converge to the same limit at infinity.One should not consider this a 

cause for anxiety. Although one might expect that the total light 

intensity converging on the earth from everywhere in the 

universe would be of blinding intensity, (a 2-dimensional 

Ölbers paradox), yet, as the uniform distribution of stars covers 

a 2-dimensional universe, the Hubble Expansion saves us once 

again!   



5 

Problem 31:  

 (i) Travel time of Tristan from Earth to Chandra: 

  t1 = a/v1  

 

 Proper time of Tristan's journey to Chandra: 

  1 = t1 = 
a 1 (

v1
2 )
2

v1
 

 Likewise, the time and proper time of Tristan's journey from 

Chandra to Lomonosov are:  

  t2 = b/v2 ;  

  2 = t2 = 
b 1 (

v2
2 )
2

v2
 

 The time and proper time for Isolde's trip to Lomonosov are given: 

   t3 = b/v3 ;  

   3 = t3 = 
d 1 (

v3
2 )
2

v3
 

  Under the  conditions of the problem there is a combination of 

velocities such that 

t1 t2 t3;

1 2 3
 

 This translates into the equations:  
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(i)
a

v1

b

v2

d

v3
t3

(ii)
a 1

v1

b 2

v2

d 3

v3
3

 

  

Here is the basic algebra: 

 

av2 bv1 t3v1v2 ; v2 (t3v1 a) bv1;

v2
bv1

t3v1 a
;

2b

v2

3d

v3

1a

v1
3 1 3t3 1t1

 

 By substitution one derives  

 

  

av2 bv1 t3v1v2 ; v2 (t3v1 a) bv1;

v2
bv1

t3v1 a
;

2b

v2

3d

v3

1a

v1
3 1 3t3 1t1

 

 

Squaring both sides does not change the equality. Squaring and 

substituting, the left side becomes : 
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( 2
b

v2
)2 ( 3

1a

v1
)2

b2(1 (v2 c )
2)

(v2 )2

b2(1
b2 (v1 )2

(t3v1 a)
2

c2
b2 (v1 )

2

(t3v1 a)
2

(t3v1 a)2
b2v1

2

c2

v1
2

 

 

The right side becomes: 

 

3
2
a2(1

v1
2

c2
)

v1
2

2a 3
v1

1  

 

Equating right and left, then multiplying through by (v1 )2 gives : 

 

 

(t3v1 a)2
b2v1

2

c2 3
2 a2(1

v1
2

c2
) 2av1 3 1  

Collecting terms in (v1)2 and v1 , and noticing that the constant a2 cancels 

out on both sides, one has:  

 

v
1
2(t
3
2

3
2 a2

c2

b2

c2
) 2t3av1 2av1 3 1

2at3(1 1 3)
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Now: 

t3
2

3
2 d2

v3
2

d2

v3
2
(1

v3
2

c2
)
d2

c2
(!)  

 

Finally one gets, after dividing both sides by v1 , and ad : 

  

(
v1
c )
(a2 d2 b2 )

2ad

t3c

d
(1 1 3)

(1 1 3)

(
v3
c )

 

 

Using the notation suggested in the statement of relativity problems, this 

can be written as: 

u1u3h1 (1 1 3)  

  

 The Principle of Relativity states that no material object can attain 

the speed of light. Therefore  0 u1,u3, 1, 3 1 . The velocities are 

assumed larger than 0 because it is assumed that the space ships will not 

be doubling back on their own trajectories. Therefore the right hand side 

of the above equation must be positive, while the left-hand side depends 

on the sign of h1 . The equations are symmetrical in v1 and v2 ; therefore: 

 It must be the case that both h1 and h2 are >0 .  

 We will now show that a contradiction results if h1 < 1 or  h2 < 1.  

 (i)  The assumption that  h1 and h2 > 1 leads to (i)  

In that case :  

 



9 

a2 d2 b2 2ad;
b2 d2 a2 2bd;
d2 2ad a2 b2; b2 2bd d2 a2;
(d a)2 b2; (d b)2 a2;
d a b

 

 

 The  conclusion results from taking the square root on both sides of 

each inequality and examining the various possibilities. If d= a+b , the 

situation is equivalent in every respect to that in which the 3 planets are 

on the same straight line, or in which d is a full  semi-circle.  

 (ii) Now assume that h1 < 1 . The calculations are as follows: 

 

u1u3h 1 1 3;

1 u1
2 1 u3

2 1 u1u3h;

(1 u1
2 )(1 u3

2) 1 u1
2 u3

2 u1
2u3
2 1 2u1u3h u1

2u3
2h2;

u1
2 (1 u3

2h2 u3
2) 2u1u3h u3

2 0

 

  

 

This is a quadratic in the free variable u1 ; the discriminant is:  

 

2 4u3
2h2 4u3

2(1 u3
2h2 u3

2 )

4u3
2(h2 1 u3

2h2 u3
2 )

4u
3
2(h2 1)(1 u

3
2 ) 0

 

 The final expression is less than 0 because h is less than 1, and 

everything else is positive. This gives a complex solution for the velocity 

u1 , and is thus not possible in the real world.  
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 (iii), (iv)  Since we are assuming that both h1 and h2 are larger than 

one, it will greatly simplify our calculations to write:  

h1 cosh
h2 cosh  

Given the large number of symmetries in the problem, we will solve the 

equations for (v1, h1 )  , then apply this solution to compute (v2 , h2 ). We 

proceed: 

u1u3cosh 1 1 3;

1 u1u3 cosh 1 3 1 u1
2 1 u3

2 ;

(1 u1
2 )(1 u3

2) 1 cosh2 u1
2u3
2 2u1u3cosh

1 u1
2 u3

2 u1
2u3
2

 

 Collecting terms, with u1 as independent variable :  

u
1
2 (cosh2 u

3
2 1 u

3
2) 2u1u3cosh u

3
2 0  

For there to be a solution, the discriminant must be real, and u1 must be 

less than 1. The discriminant is given by: 

 

 

2 4cosh2 u3
2 4u3

2(1 u3
2 sinh2 )

4cosh2 u3
2 4u3

2 4u3
4 sinh2

4u
3
2(1 u

3
2 )sinh2

 

 Here we have made use of the hyperbolic identity:  

cosh2 sinh2 1  

Since u3 <1 , the discriminant is positive, and u1 will be a real number.  

By the quadratic formula: 
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u1
2cosh u3 2u3 3 sinh

2(1 u3
2 sinh2 )

 

Fortunately(!)  

 

1 u3
2 sinh2 (cosh 3sinh )(cosh 3sinh )  

 

There are therefore 2 solutions for u1 :  

 

(a) u1
a u3

cosh 3 sinh
;

(b) u1
b u3
cosh 3 sinh

 

The symmetries of the basic equations now allow us to write: 

 

u1
a u3
cosh 3 sinh

u2
a u3

cosh 3 sinh

(b) u1
b u3
cosh 3 sinh

u2
a u3

cosh 3 sinh

 

Since the hyperbolic cosine is always larger or equal to 1, we need only 

verify that u1
b u3

cosh 3 sinh
 is less than 1. The rest follows by 

symmetry.  

  In fact 
u3

cosh 3 sinh
1  implies   
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u3 cosh 3 sinh ;
0 3 sinh cosh u3;

(1 u3
2 )sinh2 (1 u3

2 )(cosh2 1) cosh2 2cosh u3 u3
2;

u
3
2 cosh2 2u3 cosh 1 0;

(u3 cosh 1)2 0 (!)

 (v) This is always true unless: 

  

 u3
v3
c

1

cosh

2ad

d2 a2 b2
 

 (v) When v3 is at this critical velocity, then v1 must be the speed of 

light, which is prohibited. Since the same argument applies for the 

velocity v2 , it follows that under these conditions, the problem can 

always be solved unless v3 is equal to one or both of the two prohibited 

velocities  

,

2adc

d2 a2 b2
;

2bdc

d2 b2 a2  

 
 (vi) The topological argument   : Since by assumption d < a+b , one 

can imagine the circular as a piece of string which can be readjusted so 

that Isolde's trajectory is a straight line. If a<b but d+a >b, then the upper 

trajectory can be straightened out into a triangle; otherwise it will be 

curved in some way. All that really matters is that, in real Euclidean 

geometry, d can be deformed into a straight line.  Since the proper time, 

based on the tangential velocity, doesn't depend on the shape of a 
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 (smooth) trajectory, one can take Isolde's trajectory as one's fixed 

reference frame .  Special Relativity allows one to recast the entire 

problem from the viewpoint of a stationary Isolde. One then has an 

ordinary "Twin's Paradox" , and the crew of the Tristan ages less than 

that of the Isolde. 

Why can't we use this argument when d > a+b ? Because of the 

triangle inequality, real Euclidean geometry makes it impossible 

to pull the trajectory of Isolde into a straight line, which must be 

the shortest distance between the two locations of Earth and 

Lomonosov  . Therefore one cannot treat the trajectory of the 

Isolde as a fixed reference frame. 

Problem 32:  

     (i) An infinite series of the form (A,x) is monotonically 

increasing as a function of x. Since (A,0) = 0, there can be only 

one positive x such that, for a given sequence of 0's and 1's, 

(A,x) = 1  . Since all  ai  are either 0 or 1, x must lie between 1/2 

and 1.  

  (ii)  For x = 1, a1 = 1, and all the rest are 0. 

For  x = 1/2 ,  ai = 1  for all 1 .  
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Let 1/2 < x < 1 . If there is a j such that  

xi

i 1

j

1 

 we are finished. Otherwise, locate the first j such that  

xi

i 1

j

1, xi

i 1

j 1

1. 

This exists, because 

xi

i 1

x

1 x
1  

The representation we are constructing begins  

 

a1,a2,...,a j 1;a j 1 0 .  Let  a j 1...am 0  

where m is the first index after j such that 

( xi

i 1

j

) xm 1 1.Since xi

i 1

1

1 x
1  

in this range, a sequence of 0's will always be followed 

by a sequence of 1's, which will again be followed by a 

sequence of 0's. In this way, a set A is constructed, with its 

convergence to 1  virtually guaranteed  by the nature of the 

construction. 

  

Problem 33:  
 (i) 

5 1
2     is the positive root of the equation  

y2 y 1 0  
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 If  <x <1 one proceeds as follows:  let A(x)  be the 

sequence constructed via the algorithm used in (ii)  ( Call this 

the "standard representation" ) .  

  Since 
1
2

x it follows that a1=1 , and  

aixi

i 2

1 x; a2x2 aixi 1 x
i 3

a2
1

x2
aixi

1 x

x2i 3

 

 Since x>  , x2 x 1, and
1 x

x2
1 . This implies 

that, (in the standard representation, a2 = 0 ). 

 Next compute the coefficients {bi } of the standard 

representation of the series bixi

i 2

1 . starting with x2 .  

 We can do this because x has been so chosen that 

xi

i 2

1  

    One can now exhibit  distinct solutions ( A,x)=1, and 

(B,x) = 1: 

A (1, 0,a3 ,a4 ,..... )
B (0,1,b3 ,b4 ,.. ..)

 

  

In particular, if  x =  , these solutions are: 

 

  
A (1, 0,0,1,1,1,1........)
B (0,1,1,1,1....)    
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Problem 34:  
Suppose now that 

1
2
x , and consider those 

values x which are roots of polynomials of the form  

P(x) aixi

i 1

j

1,ai 0 or 1 

Obviously  aj = 1.  Since 

  a1x j 1 ...a jx2 j x j (a1x ...a jx j) x j   

 we can replace  the term xj by the above expression. This 

gives us a new unitary representation in addition to the 

standard one .  

 To show that there is no unique  unitary representation 

for any value x other than 1/2 and 1 in this range: 

 Let A be any infinite sequence of 1's and 0's . We can 

map A into a point of the Cantor Set J on [0,1/2 ]  via the 

formula : 

y
ai
3ii 1

 

Note that since the elements of J consist of ternary decimals 

without any 2's in their entries, there is no ambiguity in the 

association of each A with a real number.  

 Define a function x = (y) , whose domain is on this 

Cantor set,  by the equation  ( A(y), (y) ) = 1, where A is the 

sequence of 0's and 1's corresponding to the ternary decimal 

expression for  y   J. 

    Theorem I  : Let y be an element of J whose ternary decimal 

representation is finite. That is to say  
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y
ai
3ii 1

j

, j  

 Then  

  (i)  The point y is a limit point on the right . 

  (ii) T he function (y) is continuous on the right   . 

  In other words, given an , there is a  , and an element 

y* in J, such that  y*>y,  |y-y*|<  and  |x*-x|<  ,  

where  x= (y) ,  x* =  (y*) .  

 Proof:    Adding 1's to the ternary representation of y a 

very long distance away from the jth entry, will increase y by 

a tiny amount ( as small as one likes), and also  diminish x by 

a very tiny amount.  

Theorem II   : Let N be an integer sufficiently far away from k. 

Let 

 

y*
ai
3ii 1

j 1

3ii N

y 1
2 3N 1 ;x* (y*);

1 ai (x*)i

i 1

j

(x*)i

i N

ai (x*)i

i 1

j

Q(x*),

Q(x*)
(x*)N

1 x*

 

Then as y --->y* on the Cantor Set  J ,  x -->x* on the full   

interval [x*,x] . 

 Proof :  As y moves to y*, the coefficients of the infinite 

series Q ( defined by the difference y'-y  at  points y' where   y 

<y'<y* ) will move  through every   one    of the sequences A  

before arriving at (1,1,1,1,1,1,...) . Therefore the range of 



18 

between x* and x must encompass every value in the 

interval  [x*,x] .  

 We can now use  (iv) to prove our main result. Recall 

that if A is the sequence corresponding to the finite ternary    

y =0.a1a2...aj   J , then  

1= (A,x) = (A',x)  , where A' is the sequence of entries in:    

 y'  =0.a1a2...aj-10a1a2...aj-1aj .( base 3)  

  Recall that (y) is continuous on the right. This implies  

 Theorem 3  :  There is an interval Iy to the right of y and 

an interval Iy' to the right of y' , such that for any z  Iy there 

is a z'  Iy'  with   (z) = (z')  .  

 The details of the proof need not concern us here.  

 Since the solutions x to finite equations of the form 

P(x) aixi

i 1

j

1,ai 0 or 1  

are dense in [0,1] , the result follows  

 

 

Problem 35:  
 (i) If   pn pm pl  , then 

 
an b (am b) (al b);
a(n m l) b  

 This implies that a is a divisor of b. Since (a,b) = 1, a must =1  

 

 

 (ii)  If   pn
2 pm

2 pl
2

 , then 
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(an b)2 (am b)2 (al b)2 ;
a2n2 2abn b2

a2m2 2abm b2 a2l2 2abl b2 ;
a(n2a 2bn m2a 2bm l2a 2bl)
b2 b2 b2 b2

 

 This implies that a is a divisor of b2. Since (a,b) = 1, one also has  

(a,b2 ) = 1. Therefore a = ±1, and M = Z  

 (iii) Suppose   x y z  and xpn ypm zpl  . Then 

 

(y z)(an b) y(am b) z(al b);
{y z)(an) yam z(al) yb zb (y z)b 0.
(y z)n ym zl

 

and the values of a and b are irrelevant to the solution. 

 
Problem36 :   

If (A) :  pn1
2 pn

1
pn2 pn2

2 pn3
2

 

 one has 

 

(an1 b)2 (an2 b)2 (an1 b)(an2 b) (an3 b)2

a2n1
2 a2n2

2 a2n1n2
2abn1 2abn2 ab(n1 n2 ) b2 b2 b2

a2n
3
2 2abn3 b2

 

  

The b2 term drops out, leaving a relation linear-homogeneous in a and b !  

Collecting terms:  
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(E:)    a2(n1
2 n2

2 n1n2 n3
2) ab(2n3 (n1 n2))    

  or aH = bK , where:  

H n1
2 n2

2 n1n2 n3
2

K 2n3 (n1 n2)  

 Clearly solutions independent of a and b may be obtained by 

setting both H and K to 0. Then: 

 

2n3 n1 n2

n1
2 n2

2 n1n2 n3
2 n1

2 n2
2 n1n2 (

n1 n2
2

)2 0;

3(n1
2 n2

2 ) 6n1n2 0 3(n1 n2 )2

n1 n2 n3 (!)

 

 One easily verifies that setting all the variables equal to each other 

provides  solutions for all choices of a and b .  

 
Problem 37:   

(i) Let a=12r and b = 12s , and set H = bt , K = at in equations (E)  

above. The factor t will be dropped for the moment and reintroduced at 

the appropriate place.  Then : 

 

(i)n1
2 n2

2 n1n2 n3
2 12s

(ii)2n3 (n1 n2) 12r;
n1 2n3 n2 12r
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Substituting in (1): 

 

12s n1
2 n2

2 n1n2 n3
2

(2n3 n2 12r)2 n2
2 n2(2n3 n2 12r) n3

2

4n3
2 n2

2 (12r)2

4n2n3 48rn3 24rn2
n2
2

2n2n3 n
2
2 12rn2

n3
2

 

  

Transpose, collect terms, and make n2 the unknown variable: 

3n2
2 (36r 6n3) (3n3

2 48rn3 144r2 12s) 0  

 

Solving for n2 produces: 

(a) n2
6n3 36r 144rn3 144s 432r2

6
n3 6r x;

(b) x 4rn3 4s 12r2

(c) x2 4rn3 4s 12r2;

 

  

Symmetry allows us to choose n1 as the solution with positive x, n2 

as the solution with negative x . Transposing equation (3) and solving for 

n3 gives:  

n3
x2 4s 12r2

4r
3r

x2 4s

4r
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(ii) We now reintroduce the factor t. Rewrite the above equation as: 

 

n3 3rt
x2 4st

4rt
 

A solution may be obtained by letting x = 2t ; then 

 

n3 3rt
4t2 4st

4rt
3rt

t s

r
 

A special solution may therefore by obtained by letting 

 t0 = s, x0 =2s:  

 

n
3
0 3rs;

n1
0 3rs 6r 2s

n
2
0 3rs 6r 2s

  

  

Problem 38:  
     The general solution may be obtained by letting   

 

tk s kr;
xk 2tk

n3
k 3r(s kr)

(s kr) s

r
3kr2 3rs k
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The values of n1 and n2 are therefore:  

 

n
1
k n

3
k 6r xk

3kr2 3rs k 6r 2(s kr)
3kr2 3rs 2r(k 3) 2s k;

n2
k n3

k 6r xk
3kr2 3rs k 6r 2(s kr)
3kr2 3rs 2r(k 3) 2s k

 

 

Note that, since the equations (E) are homogeneous in a and b ,  a 

solution for tr , rs is also a solution for r,s , which is also a solution for 

12r=a , 12s = b . Therefore we have shown that solutions exist for all pairs 

of non-zero integers .  

 

Problem 39: 
(i)  Let  

P(x) a0xe a1xe 1 ... ae
Q(x) b0x f b1x f 1 ... b f

 

  Without loss of generality one can assume that there are no 

common factors to all of {ai } or  all of {bj }. Also, assume  exponent e <   f 

The basic properties  of the greatest common divisor,  d= (a,b)  are:  

 (1) (a,b) = (b,a)  

 (2)  d = (a,  b± ka ) = ( a ± lb , b ) ,  k and l are arbitrary integers. 
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 (3) Assuming x, a ,b positive , then  x(a,b) > (xa ,b ) >  (a,b) . One 

easily shows from this that (xa,yb)  <  xy(a,b) . The result carries over to 

negative values by using the absolute value , |(a,b)|.  

  If G(n) = ( P(n) , Q(n) ) , then , using absolute values of the gcd:  

 

(a) (P(x),a0Q(x)) G(P,Q)

(b)(P(x),a0Q(x)) (P(x),a0Q(x) b0x f eP(x))

(P(x ),b1 b0a1x f 1 ... (b f b0ae ))

(P(x),Q' (x))

 

where the degree of Q' is at least 1 less than the degree of Q.  By going 

back and forth in this process one can reduce the polynomials P and Q to 

linear forms Ax+B , Kx + L , in which either B or L or both, are non-

vanishing. Continuing the process one more step, one has:  

 

(Ax B,A(Kx L)) (Ax B, A(Kx L) K(Ax B))

(Ax B, AL KB) (Ax B,Kx L) .... (P,Q) ;
(Ax B,AL KB) AL KB ;
(P,Q) AL KB

 

 It follows that the absolute value of |(P,Q)|, and therefore G(n) = 

(P,Q), has only finitely many values. Clearly the lack of a common 

algebraic factor is crucial to this argument, since its presence brings the 

process to an abrupt halt with the appearance of 0 on one side or the 

other.  

(ii)  Let n be given, and suppose that (P(n),Q(n) = m  

Then (P(n+km), Q(n+km )) =mh , as one can see by expanding the terms 

(n+km)j   , j = 1,2,. . in each of the polynomials . Since the range of G(n) is 
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finite, there must be a maximum h =H for any given m. It follows that 

G(n) has period mH . 

 Since a periodic function of finite range  over the integers cannot 

have more than one period, we have  also shown the following:  Let m1 , 

m2 , ....... mk be the distinct integers  in the range of G(n) . Then  MaxG(n) 

= period G(n) = Lowest Common Multiple (m1 , m2 , ....... mk)   

(iii)    

P(x) ax2 bx n  

 a, b , n integers, (a,b) = 1, a>1 . If r=p/q is a solution, then q must be a 

divisor of a. For: 

a(
p

q
)2 b(

p

q
) n;

ap2 bpq nq2 ;
ap2 q(nq bp)

 

 

Since (p,q) = 1, q is a divisor of a. Write a = qd. Substituting in the above: 

a(
p
q
)2 b(

p
q
) qd(

p
q
)2 b(

p
q
)

p
q
(dp b) n

 

Since (p,q) = 1 q must divide dp + b. So  let : 

k
dp b

q
;n kq;

p
kq b

d

 

 Suppose that q and d have a common factor , t > 1. Since by 

assumption (b,a) = 1, it follows that (b,d) =(b,q) = 1. In that case p  

cannot be an integer.  It follows that q must be a sharp divisor  of a,  

defined as  follows: 
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 We will say that q is a sharp divisor of a if a = qd , and (q,d) = 1.  

Our denominators therefore must be sought among the sharp divisors of 

a. The above equation for p then translates into a congruence: 

kq b(modd)  . From elementary number theory one knows that if 

(q,d) = 1, then one can always find a solution k to this congruence. Let k0 

be such a solution, with 1 < k0 < d . Then there is a whole sequence of 

solutions { km } ; km = k0 +md, m = 0, ±1,±2, ... , with corresponding 

solutions { pm} , for p It follows that  

 

pm
kmq b

d

(k0 md)q b

d
k0q b

d
m p0 m

 

Once again, since (q,d) = 1, the set  { pm}  represents all solutions for a 

given sharp divisor q of a. If S is the set of all sharp divisors of a 

S= (q1, q2 ,.....qk ) , then we can write the complete set of solutions for 

P(x) = n , as  

Q {p0(q j) m},qj S;m 0, 1, 2,...  

  

Problem 40:     
 Once again , P(x) ax2 2bx n , a prime ,b, n integers,  

(a,b) = 1; but now we look for solutions over the complex   rationals,  

r
u iv

w
, u,v,w integers,  g.c.d.(u,v,w) = 1. The equation for P(x) is a 

simple quadratic, so one may apply the quadratic formula to P(r) +n = 0 , 

to get:  
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:

r
2b 4b2 4an

2a

b b2 an

a

u iv

w
(i) w a;u b
(ii) (b2 an) v2 0
(iii)(v2 b2) an
(iv) v2 b2(mod a)

 

 In this problem it is assumed that a is prime. Theorems about 

quadratic residues enable one to generalize to all a . It is clear that:  

 (a) If b and -b are both quadratic residues of a , or if neither b nor -

b are quadratic residues, then -b2 is a quadratic residue of a.  

 (b) If b is a quadratic residue,  and -b is not a quadratic residue of a 

, or vice versa, then -b2 is a quadratic non-residue of a.  

 Therefore, one can find a solution (c,-n ) if and only if -1 is a 

quadratic residue of a . One now invokes a basic theorem of Number 

Theory: 

 Theorem  : -1 is a quadratic residue of a,  if and only if a is of the 

 form 4n+1 .    (See for example Topics in Algebra, i.n.herstein, 

Wiley and Sons, 1975;  pg. 360 ) . Therefore a must be a prime of this 

form. 
 

 

Problem 41:   
P(x) a0 x3 2a1x2 a2x  

 

all coefficients are  non-zero integers , a0 >2 ; (a0,2a1) 1 ( so that in 

particular, a0 is odd ) .  

 From the previous problem we know that q must divide a0 . 

Requiring that a0 and a1 be relatively prime is enough to show, (using 
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arguments along the lines of those i  problem 10) ,  that q must be a sharp 

divisor,  or   a0 = qd, (q,d) = 1. We now proceed as follows: 

 

a0(
p

q
)3 2a1(

p

q
)2 a2(

p

q
) n;

a0p3 2a1p2q a2pq2 nq3
 

As a0 =dq, this can be divided by q: 

dp3 2a1p2 a2pq nq2  

Since (p,q) = 1, this equation shows that p must be a divisor of n, 

or n =pe .  

 Substituting back into the equation and dividing through by p: 

dp2 2a1p a2q eq2;
dp2 2a1p q(eq a2) 0  

This is a quadratic in the variable p. Solving: 

p
a1 a1

2 d(eq2 a2q)

d

a1 k

d
 

 Once again it is required that the radical  be a perfect square: write : 

 

k2 (a1
2 d(eq2 a2q));

e
k2 a1

2 da2q

dq2
 

From the equation for p one sees that k a1 pd . A further 

substitution gives:  

e
(a1 pd )2 a

1
2 a2dq

dq2

dp(dp 2a1) a2dq

dq2

; 
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e
p(dp 2a1) a2q

q2
 

 Since (q,p) = 1,  q must divide dp+2a1 . Hence sq = dp + 2a1, or  

sq  -2a1  = dp. Since a1 is given, (a0,2a1)=1 , q has to be a sharp divisor of  

a0  

d = a0/q , (q,d) =1  Therefore there exist solutions of the congruence  

sq 2a1(modd) .  Let s0 be a solution such that 0 < s0 < d . Then 

 s0q 2a1 dp0;  

Other solutions are: 

sm s0 md
pm p0 mq  

s0 and p0 having been calculated, "m" now becomes the independent 

variable. Substituting in the above equation , one obtains a set of 

solutions {em} :  

em
pm (dpm 2a1) a2q

q2

(p0 mq)(r0 md)q a2q

q2

(p0 mq)(r0 md) a2
q

m(r0 md)
p0r0 p0md a2

q

 

We may therefore find the set of values for m from the congruence: 

 

(p0d)m a2 p0r0(modq)  

 

Since (p,q) =(q,d) = 1, there is a minimal solution m0 such that  
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0 <  m0  < q. The solution set for m therefore contains numbers of the  

form     m j m0 qj; j 0, 1, 2,...  

 In conclusion, for a given sharp divisor q of a0 , the set of fractional 

solutions {rj } =  {pj/q} of the Diophantine equation P( rj ) = n = integer, is 

 

pj

q

p0
q

m j
p0
q

(m0 jq); j 0, 1, 2;

n e j pj ;

ej m j (s0 mjd) k0 p0dj
 

 

where k0
( p0d )m0 p0r0 a2

q
 

 

Problem 42:    
  (a d )3 (a d )3 b3   

 Multiplying out the terms on the left side one gets : 

  2a3 6ad b3  

 This factors as :   

2a(a2 3d) b3  

 We see that b is even and that a divides b3 . We will deal with the 

factor of 2  in a moment . Writing b = xyzw ,  

 

b3 x3y3z3w3 (x3y2z)(yz2w3)
a(yz2w3)  

Then 

a (x3y2z);
a3 x9y6z3  
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 In other words, x is the largest cube in a that is a factor of b, y is the 

largest square, z contains neither square nor cubic factors, and w does 

not enter in a at all. There is some ambiguity in this factorization: if y 

and z share a factor r, and x and w share a factor t, then the factorizations  

( xr/t , yt/r , zt/r, wr/t ) and (x, y,z,w) are equivalent.  

 Substituting :  

2x9y6z3 6x3y2zd x3y3z3w3  

 Dividing through by a: 

 

2x6y4z2 6d yz2w3  

Finally: 

  

6d yz2(w3 2x6y3);
a x3y2z;
b xyzw

 

 

 Since b must be even, at least one of the numbers x,y,z, w is also 

even. The presence of a factor of 2 in each leads to various limitations on  

a,b and d :   

 (1)  y = 2  . Then:   

b 2x zw; a 4x3 2z; 3d z2(w3 16x6 3)  

 a has a factor of 4  

___________________________________________________ 

 (2) z = 2  . Then :  

b 2xy w; a 2x3y2 ; 3d 2y 2(w3 2x6y3)  

 d has a factor of 2  

___________________________________________________ 

 (3) w = 2  . Then :  
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b 2xyz ;a 2x3y2 ; 3d yz2(4w3 x6y3)  

___________________________________________________ 

 (4) x = 2  . From the expression for d in equation (C) one sees that if 

x is even then one of the other variables must also be even. Taking each 

case separately: 

 (i)  y = 2  . Then:   

b 4 zw; a 32 3 2z; 3d z2 (w3 1024 6 3)  

 (ii)  z = 2  . Then :  

b 4 yw; a 16 3y2 ; 3d 2y 2(w3 128 6 3)  

 (iii) w = 2  . Then :  

b 4 yz; a 8 3y2z; 3d 4yz2 ( 3 16 6y3)  

________________________________________________ 

From the equation for d in (C) one sees that either 

 (i) 3 divides y 

 (ii) 3 divides z , or:  

 

 (iii) w3 2x6y3(mod3) . Since k(k3 k(mod3))  

 

one has w 2x2y x2y(mod3)  

  

If x is divisible by 3, then so is w. If not, then w y(mod3)  

 
Problem 43:  

 

  (a 6i 2)3 (a 6i 2)3 b3   

 Proceeding as before, one obtains the equation: 

 2a3 432a b3 2a(a2 63)  
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 d = -72 . Substituting this into equation (C) and experimenting with 

the values of x,y,z, w, one obtains  two solution sets:   

I: x 1, y 4, z 6, w 5;
a1 96; b1 120

II: x 1, y 2, z 3, w 2;
a2 12; b1 12

 

 

Problem 44:   
(i) Our first step is to show that both a and b are divisible by 4. 

Clearly b is even, b = 2b' . Hence: 

2(a3 63a) 8b'3 ;
a3 63a 4b' 3

 

This equation shows that a is even , a = 2a' . Hence: 

8a'3 63 2a' 4b'3 ;
2a'3 4 27a' b'3

 

which shows once again that b' is even b' = 2 . Substituting: 

2a'3 4 27a' 8 3;
a' 3 54a' 4 3  

 This shows that a' is even , a' =2  : 

8 3 108 4 3;
2 3 27 3  

 Thus , a and b are divisible by 4 

 Our problem has been reduced to finding the solutions:  

(D) : 2 3 27 3 

 As a way of checking the work so far, one can verify to one's 

satisfaction that  = 24 ;  = 30 , and = 3 ,  = -3 , are solutions. 

 Put equation (D) in the form:  
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2 3 3

27
 

We will obtain a contradiction by assuming that neither nor   contain 

a factor of 3 .( If one does then clearly the other must also). There are two 

possibilities: 

(1) and   are of the form: 3h 2; 3j 1 

(2) u and v are of the form: 3h 1; 3 j 2  

 In the first case one multiplies through to get: 

 

3h 2
(54h3 108h2 72h 16) (27 j3 27 j2 9 j 1)

27

(2h3 4h2 j3 j2 )
5 3 j 24h

9

 

 Since 3 does not divide 5, this cannot be an integer. In the second 

case one gets: 

 

3h 1 ... (2h3 2h2 j3 2 j2 )
12 j 6h 2

9
 

Since 3 doesn't divide 2 this can't be an integer. 

 It follows that  and   must both be divisible by 3, and therefore 

that a and b are divisible by 12.  

 (ii)  Dividing a and b through by 12  one ends up with an equation 

of the form:   

2u3 3u v3  

 

 Let v =xyzw , u = x3y2z. Then D yz2w3 3eQ  

Once more working through the details the auxiliary equation becomes:  
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(E) :   3 yz2(2x6y3 w3)  

  (i) e = 0 implies y = z = 1. The two solutions presented in 

Problem 14  satisfy this condition. 

  e = 2 . Then  y = 9 is clearly too large . So  

 y = 1, z= 3  is the only possibility. But then  z2 = 9, which is too large for 

the right side. 

  (ii) e = 3 is only compatible with w = 3,  y = z = 1. But if w = 3, 

then x must also = 3, which gives a 27 on the right hand side. Obviously 

for any value e >3, y,z and w must all contain a factor of 3, making the 

right side too large.  

 

Problem 45:    
  The situation for e = 1 touches on advanced topics in number 

theory, and the author frankly doesn't know what the answer is. Here is a 

sample of what one is up against: 

 If e = 1, then y = 3. Equation (E) becomes: 

   (F):   54x6 w3 1  

This can be manipulated to produce: 

54x6 w3 1;
w3 1 (w 1)(w2 w 1)
w2 w 1 (w 1)2 3w

 

 From the final equation one sees that the greatest common divisor 

of the two factors of w3 + 1 can only be 1 or 3, and that if w+1 is only 

divisible by 3, then w3+1 can be at most divisible by 9. Since there is a 27 

on the left, w+1 must be divisible by 9 . Furthermore, w+1 must be even. 

It follows that one can decompose x into two relatively prime factors p 

and q, such that :  
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x pq
w 1 18p6

w2 w 1 3q6
 

 Substituting from the first upper equation to the lower yields: 

 

(18p6)2 3(18p6 1) 3q6

2234(p6)2 2.33 p6 3;
2233(p6 )2 2.32 p6 (1 q6 ) 0

 

 This is an ordinary quadratic equation in the variable p6 . Solving 

gives:  

 

p6
18 (2.32 )2 4.2233(1 q6)

2333

3 9 12(1 q6 )

36

3 12q6 3

36

 

 This equation can ultimately be reduced to the form:  

 

p6
2

4q6 1

3

24
 

  

 Write : 

c 2q3;
c2 1

3
r2 ;

c2 3r2 1

 

 This is a Pell's equation, which has  infinitely many solutions. It is 

not known to the author if there are infinitely many solutions  when c is 

restricted to the values determined by q; nor if there are, whether one can 
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then use those values to produce a number to the 6th power to determine 

the value of p.  The author doesn't know the answer. Is there a number 

theorist in  the house? 

 

Problem 46:    
 

      If z = 1, the equation  g n
x

y

y

z

z

x
 becomes  

x2 y

xy
n y m  

 The obvious solutions are  x = 1, y = 1 , m=2, n = 3 

      x=2 , y = 4,  n= 5 

 We will show that these are the only solutions for x,y >0 , z = 1 .  

 From the above equation one sees that x must divide y . So set 

 y = kx . Substituting: 

x2 kx

kx2

x k

kx
 

This shows that x must divide k , or k = hx . Once again: 

x hx

hx2

1 h

hx
 

Since h must divide 1, h = 1, and x can only equal 1 or 2 . Since 

y =kx = hx2 , y equals 1 or 4 respectively .  

 

Problem 47 

 As stated z = 1 , q > 1 . Then 

p

q

x

y
y
1

x
y
x2 xy

xy
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x and y can have a common divisor . Let t = gcd(x,y); x = at, y = bt,  

gcd (a,b) =1 Substituting: 

p

q
tb

t2a2 tb

t2ab

tb
ta2 b

tab
tb h

 

 By hypothesis gcd(a,b) = 1. If t and a have a common factor h will 

still be in lowest terms, unless t and b have a common factor. Therefore, 

we let b = ls , and t = ms , with ( l, m) = 1. Then : 

 

h
msa2 ls

lmas2

1

lma
(
ma2 l

s
)  

Since (l.m)=1 , (a,b)=1 it follows that ( l,a ) = 1 , ( a,s ) = 1. Therefore: 

gcd(lma,ma2 l) 1 

 Since s must divide ma1 + l,  it follows that s is restricted by the 

values of l, m and a  .  

 If gcd(s,ma2 l) 1, h is already in terms, with irreducible 

denominator q. Otherwise these two terms share a common factor, d :  

gcd(s,ma2 l) d  

 We now reason as follows: Let q be given, q >2 . 

Factor q into 4 divisors q = lmaf , where 

 (l,m) = 1 , (l,a)=1 , (a,f) = 1. q being finite, such a factorization can 

only be done in a finite number of ways. ( Note that we do not require 

that 

(l,f) = 1 , or (m,f) = 1  )  
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        Let W = ma2 + l . Let D d1,d2,.....,d j  be the collection of 

divisors of W. Every denominator , N, which reduces to q must be of the 

form 

N = lmas = lmafd, where d is a member of D. Since there are only finitely 

many divisors of W, and W can only be constructed from q in a finite 

number of ways, the total number of numerators, p, must be finite. In 

fact we have: 

pj
W

s
tb

W

s
mls2  

 The result is true even if one of the numbers x or y is negative. If, 

for example, we let l be negative, then W = ma2 - l' , l' = -l > 1 This will 

lead to an exceptional case only if W = 0, that is ma2 = l . Since (l,m) = 

(l,a) = 1, this is only possible if a = 1, m = 1, l = -1. The theorem continues 

to be true if  q = 1 ,  x and y > 0 , z = 1.  

 

 Problem 48:    
The situation described above corresponds to the cases 

 n = -m2  ,  x = m,  z=1,  y= - m2. Therefore there is at least one 

solution for every negative square n .  

 

Problem 49:    
Writing out the equation g(x,y,z) = n as a polynomial: 

x2z y2x z2y nxyz  

Rearranging:  x(nyz xz y2) z2y . One sees that x divides z2y 

By symmetry y divides x2z  and z divides y2x, 

 Thinking about the situation one realizes that x, y and z factor in 

the following manner: 



40 

x a1a2c1
2c2;

y a1
2a2b1b2;

z b
1
2b2c1c2

 

where the c's are factors shared by x and z, etc. There are no other factors 

since we are assuming gcd (x,y,z ) = 1.  

 Substituting in the equation for g: 

g
x

y

y

z

z

x

x2z y2x z2y

xyz

a1
2a2
2b1
2b2
1c1
5c2
3 a1

5a2
3b1
2b2
2c1
2c2
1 a1

2a2
1b1
5b2
3c1
2c2
2

(a1a2b1b2c1c2 )3

a1
1c1
3c2
2 a1

3a2
2b2
1 b1

3b2
2c2
1

(a1b1c1)(a2b2c2 )2

 

 Since gcd(x,y,z) = 1, c2 , which is common to x and z , cannot divide 

y, therefore cannot divide a1
3a2
2b2  . Therefore, in fact a2 b2 c2 1

. 

 Replacing  a1  by a , b1 by  b, c1 by c, one derives, finally:  

g
a3 b3 c3

abc
n as required.  

 

 

Problem 50    
   The follows solutions may be found with a bit of 

experimentation. The expression (a,b,c) = ( m1 , m2 , m3 ) means that the 

values m1 , m2 , m3 may be distributed between a,b and c in any 

permutation: 
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(1) (a,b,c) (1,1,1)
x 1, y 1,z 1, n 3

(2) (a,b,c) (1,1,2)
x 1, y 2,z 4 n 5

(3) (a,b,c) (1,2,9)
(i)x 4, y 9, z 162, n 41
(ii)x 2, y 36,z 81, n 41

(4) (a,b,c) (1,2,3)
(i)x 9, y 2,z 12, n 6

(ii)x 3, y 18, z 4, n 6

(5) (a,b,c) (1,5,9)
(i)x 225, y 18, z 5, n 19
(ii)x 405, y 25, z 9 n 19

 

 


 Comment by Noam Elkies, Harvard University : 

  " E(n) : a3 b3 c3 nabc is an Elliptic Curve with at least 

one rational point (1:-1:0 ) . If there is any non-torsion point then there 

are infinitely many; and if any component of the real locus contains such 

a point, then the rational points are dense in that real locus -- including 

the points with a,b,c all positive. That said, I would expect that some E(n) 

have points of infinite order, some would not, and it would be a very 

hard problem to predict for each n which is the case for g(n). 

 "If there's a non-trivial solution in polynomials a(n), b(n), c(n) , 

then it yields a non-torsion point for all but finitely many n, but I doubt 

that this happens for an equation as simple as E(n) " 
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 Comment by Edray Goins, Cal Tech : 

 "  I thought some about the problem you posed, and I wanted to 

share some thoughts.  

 Conjecture:  Let n be a positive integer. Then the equation  

x/y + y/z + z/x = n has only finitely many positive   integral solutions x,y,z 

(up to scalar multiple). 

 "I want to argue that the conjecture is not true by discussing in 

detail the case n = 6. The substitution you showed me on Friday 

involving the curve a3 b3 c3 nabc looked similar to an elliptic 

curve,  so I thought to translate the conjecture into one explicitly 

involving an elliptic curve. Fix an integral solution (x,y,z) and make the 

substitution: 

u
3(n2z 12x)

z

v 108(
2xy nz z2

z2
)

 

Then (u,v) is a rational point on the elliptic curve: 

En:v2 u3 Au B;

A 27n(24 n3)
B 54(216 36n3 n6)

 

 (It actually turns out that E(n) is an Elliptic Curve whenever n is 

different from 3, but I'll discuss that case separately.) Now this curve has 

the "obvious" rational point T = (3n2 , 108 ), which has order 3, 

considering the group structure of En . It actually turns out that these 3 

multiples correspond to the cases x = 0 and z = 0, so if such an integral 

solution (x,y,z) exists then the rational solutions (u,v) must correspond to 

a point on En not of order 3.  
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 "Now I decided to explicitly compute points on E(n) for various 

values of n to see what would happen. In the following table I'm 

computing the Mordell-Weil group of the rational points on the Elliptic 

Curve, i.e. the group structure of the set of rational solutions (u,v) : 

 n =1 ; En(Q) = Z3 

 n =2 ; En(Q) = Z3 

 n =3 ; ...see below... 

 n =4 ; En(Q) = Z3 

 n =5 ; En(Q) = Z6 

   n =6 ; En(Q) = Z3xZ 

 n =7 ; En(Q) = Z3 

 n =8 ; En(Q) = Z3 

 n =9 ; En(Q) = Z3xZ 

 "Hence when n =1 ,2,4,7 or 8 we find no integral solutions (x,y,z) . 

When n=5 there are only 6 rational points on En , namely the multiples 

of (u,v) = (3,756) , which all yield just one positive integral point (x,y,z) = 

(2,4,1) ... But something fascinating happens when n = 6 ... 

 "The rank in all the previous cases is 0, so En has only finitely 

many points, thereby proving the conjecture in these cases. However 

when n = 6 the rank is positive ( the rank is actually 1) so there are 

infinitely many rational points (u,v) . But we must be careful: not all 

rational points (u,v) yield positive integral points (x,y,z) . Clearly we can 

scale z large enough to always choose x and y to be integral, but we 

might not have both x and y positive. You'll note that x >0 if and only if u 

< 3n2 , so we only want rational points in a certain region of the graph. 

Since the rank is 1, this part of the graph is dense with rational points! 
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Hence, if we can choose n so that En has positive rank , then I would 

expect the above conjecture  

( that En has at most  finitely many solutions for all n)  to be false.  

 "Let me give some explicit numbers. When n = 6 , the torsion part 

of En(Q) is generated by T = (108 ,108) , and the free part is generated by  

(u,v) = (-108,2052) . By considering various multiples we get a lot of 

positive integral solutions - yet unwieldy! - points (x,y,z) such that  

x

y

y

z

z

x
6 : 

    (1)  12 ;  9 ;  2  

    (2) 17415354475  ;  90655886250  ;   19286662788 

    (3) 260786531732120217365431085802 ;1768882504220886840084123089612 

; 1111094560658606608142550260961 

   (4) 64559574486549980317349907710368345747664977687333438285188 ;  

70633079277185536037357392627802552360212921466330995726803 ;  

31381830303893596780062940130789557072745299086647462868546 .  

 "I'll just mention in passing that when n = 9 the Elliptic Curve 

E9 also has rank 1. The generator (u,v) =(54,4266) corresponds to the 

positive integral point (x,y,z) = (63,98,12) on this curve.   

 What about n = 3? The curve En becomes v2 (u 18)(u 9)2  

 This gives two possibilities, either u= - 9 , or u = 18. The first 

corresponds to x = z, while the second corresponds to z/x > 4 . By 

cyclically permuting x,  y and z,  we find similarly that either x =y =z , or  
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x/y + y/z + z/x > 6 . The latter case cannot happen by assumption, so  

x= y= z is the only possibility, i.e. (x,y,z )= (1,1,1) is the only solution."  





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


