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 The space F of all real functions on the real line 

 f: x —> y =f(x) is obdurate to universal structures. Normally 

one selects certain "tame" sub-spaces, the differentiable or 

continuous functions, measurable functions, Sobelev spaces, and 

so on. 

 In this exercise I will be proposing a way of associating a 

"transfinite index" to every point (x, f(x)) on the graph of a very 

general sub-space of F which is capable of being extended with 

little difficulty to most of the other elements of F. The useful 

employment, however, of this method lies primarily in the analysis 

of places where the functions of F become unbounded.   

     The first restriction of F   is to a space F+0, defined as follows: 

    (a) The domain of f ε  F+0 is the complete non-negative x-axis, 

R0
+:0 ! x < "  

    (b) The range of f is a subset of the non-negative y-axis  

   (c) For all f in F+0    , f (0) = 0 

        It is difficult to imagine that one could find any universal 

structures in such a vast space. Certainly topologies, tubular 

neighborhoods, algebra, manifold structures, composition 

identities are hard to come by.  
   Of course,  f ,g !F0

+ " f (g) !F0
+  , but this is not much to go 

on. However, a simple transformation puts the functions of F+0 

into a 1-1 correspondence with a subspace B, whose functions 
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incorporate a natural dynamical system that embodies structural 

information: 

 Definition:  The reductive operator L over F+0   is defined by:  

! 

L( f ) = x
f

(1+ f )
="(x)

 

Properties of L : 

    (i) ϕ  (x) is defined at every point of the domain of f 

 (ii) ϕ  (x) <x for all x > 0 

 (iii) If f is unbounded at some point t >0 - that is to say, 

arbitrary large values of f are found in any neighborhood of t, then 

there are correspondingly, points of ϕ (x) in the neighborhood of t 

arbitrarily close to the fixed point axis, I (y=x) .  

     (iv) L is invertible.  

  (a) At x=0, both f and ϕ  = 0 

 

                         (b) For x >0, one easily finds the inverse solution 

    The application of the operator L to the space F+0 produces a 

function space B characterized by the above list of properties.  

❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆  

 Let ϕ  be an element in B. Then, clearly  

          x > ϕ(x) >ϕ(ϕ(x))>...   >ϕ (n) (x)  

    Theorem:  
  For given x, ϕ  ε   B, the iterative limit lim

n!"
# (n) (x) 

always exists = δ  �  0.  

  Observe that from the 3 symbols for somewhat different versions 

of infinity, (� , � , Aleph0) the ordinal symbol �  is selected. 
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 The theorem is all but self evident, because all members of B 

are monotonically descending and bounded from below by 0. 

Observe also that if δ  > 0, then the value of ϕ(δ) at δ is not δ itself 

but must drop down to a lower value, x' < δ. In other words, the 

orbit of ϕ(x)  moves to a point on the fixed point axis I, but ϕ   drops 

down at that point to some other value.  

 If x’= 0, the iterative process comes to a halt. Such a value for  

ϕ  (� ) corresponds to a zero in the associated function in F+0   ,  

!(x) =
"

x # "
   

 It will not be of interest to us, in terms of the structures we are 

examining, for there to be 0's in either of these two functions except 

at the origin.  
 Definition:  If lim

n!"
# (n) (x) = $ we write  ! (" )(x) = #  

Although ω  is the first countable ordinal this notation can clearly 

be extended to all countable ordinals.  

 Definition:   Let γ be any transfinite countable ordinal. Then 
we write: lim

n!"
#(n) (x) = # (" )(x),  where n runs through all finite 

and countable ordinals up to and including �  .  

 Theorem: This notation is consistent and free from 

contradiction. Proof by transfinite induction.  

 Theorem: Let ϕ  ε   B*. For any x ε   R+, there is a transfinite 

ordinal Γ  (x, ϕ), such that  ! ("(x,! )(x) = 0 

    Informally: if the iterative system moves to an attractor  δ, and the 

value of ϕ(δ) is less than δ, one can continue to apply ϕ  to δ , 

moving to the next attractor   ,  δ1 = ϕ(ω)(δ)  ,  ϕ(ω)(δ1)  <δ1  .  
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    This process can be repeated indefinitely; as long as the system 

hasn't yet arrived at 0, a descending chain of attractors is set up, 

which cannot come to a halt at any limit point greater than 0. 

 By Zermelo's Well-Ordering Theorem this descending chain 

must eventually arrive at 0 in a number of steps given by some 

ordinal Γ .  

 Theorem: There exists a minimal countable ordinal i(x, ϕ  ), 

such that ! (i(x,!)) (x) = 0 . 

  That such an ordinal exists follows from the Well-

Ordering Theorem. That it must be countable can be seen from the 

Lesbesgue Integral Theorem. The intervals between successive 

attractors must have some positive length, but the sum of 

uncountably many positive lengths cannot be equal to the finite 

length [0,x] 

  We will call the number i the ordinal index of x in ϕ  . 

 Theorem: The ordinal index of any function in B* is always a  

countable transfinite ordinal without finite  part. 

 Since there are no zeros of ϕ save at the origin, no finite 

iteration from any point x > 0 can reach 0.   

 Next, let φ  be any function of F+0. If φ is bounded in any 

finite sub-interval of R+, then Lφ  = λ   will be bounded away from 

the fixed point axis in such a way that it will hold no attractors 

other than 0. In this case there will be only one ordinal index for all 

positive points of the domain, namely ω.  

 In particular, if φ  is already a member of B*, then Lφ  will be 

reduced to a function whose points all have the "default" index ω.    
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 This suggests a further restriction on the space of all 

functions, to a space F', of functions which have some unbounded 

values in the finite part of their range. The correspondence allows 

us to associate the transfinite ordinal structure of the functions in 
B* with the unbounded points of the functions in F' .  This 

provides structural information at these points that may not be 

apparent   with functions in F’. 
 For example, one sees that the graphs of functions in B* will, 

in general, have limit points on the fixed point axis I, of two types: 

topological limit points and iterative limit points. The topological 

points are not the endpoints of any dynamical orbit, but are simply 

limit points of the 2-D set of points (x, ϕ(x)). 

   This distinction between orbit end points and topological limit 

points is not apparent in the structure of the unbounded points of 

the corresponding function in F' , but is revealed when moving to 

B* . 
 Furthermore, every attractor will have orbits of various 

countable transfinite ordinals associated with it. This indexing of 

attractors in accordance with ordinals cannot be seen in F, but is 

revealed under the transformation L.  

   Thus, L behaves somewhat like a Fourier Transform that reveals 

the structure of a given function in terms of its harmonics. 
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A  Model from Number Theory 
 If one restricts the functions  of B to those whose iterates on 

the domain of rational numbers Q converge to rationals, then all of 

the above considerations will apply if the domain R+0 , is replaced 

by the domain Q+0 of positive rational numbers.  

    Let r be a positive rational. It can be written as a fraction in 

lowest terms, r = p/q, p , q integers. Let P stand for the "numerator 

function" 

P(r) = P(p,q) = p , ( r =p/q ε  Q+0 ) 

P has the following properties: 

    (1) P  associates a unique integer with every rational r 

     (2) P is "loosely monotonic" in the following sense: If r > n, 

where n is some integer, then P(r) >  n . The converse is not true P(r) 

< n tells us nothing about the magnitude of r.  

 (3) In fact, although it is never infinite P is unbounded   in the 

neighborhood of every point of its range.  

  Let us now apply the reductive operator  L(P) defined above as 

L( f ) = x
f

(1+ f )
= l(x)  

to the numerator function P . The result is: 

L(Pp(r)) = r
p

(1+ p)
=
p

q

p

(1+ p)

=
p2

q(1+ p)
= !(r)

 

 The function ϕ  associates a dynamical system with P that is of 

great interest. A simple calculation shows : 
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! (2) (r) = r
p3

(1+ p)(1+ p2 )

= r
1

(1+ 1
p )(1+

1
p2 )

 

 
Continuing by induction one has:  

! (n) (r) = r
1

(1+ 1
p )(1+

1
p2
)(1+ 1

p4
)...(1+ 1

p2n"1
)

 

 

   It turns out to be remarkably simple to evaluate the limit of 

this expression as n goes to infinity. If one multiplies together all 

the terms in the above product, one ends up with exponents of 1/p 

that are the binary representations of all the integers from 1 to 2n !  

Therefore  

! (" )(r) = r
1

(
1

p j
)

j=0

#

$
= r

1

( 1

1%
1

p

)

=
p

q

p %1

p
=
p %1

q
(!)

 

  Thus, the first ω -cycle of iterates of j(r) reduces the numerator by 

1. Setting r' =( p-1)/q  one recognizes the new rational argument r' 

may not be in lowest terms. Thus r' = p'/q' , with p' < p , q'<  q . If ϕ is 

applied to this number the result will of course be strictly less than 

r' .   

!(r' ) =
p' 2

q' (1+ p' )
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Iterating this ω  times produces a limit result of( p'-1)/q' . Of course 

if p' = 1 , the process terminates. In general, given any rational r,  

there will be a finite number of ω-cycles of iterates on ϕ which 

sends the orbit of ϕ from r to 0. This is the transfinite countable 

index i ( ϕ , r) .  

❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆  

 Let review some definitions and establish others:  

 

Definition 0: The expression "countable transfinite ordinal" will be 

abbreviated c.t.o.  

 

Definition 1  : If ϕ  is a function in B , x a point in the range R+ , then 

i(ϕ  ,x) , called the ordinal index of  the point x , in ϕ  , is the smallest 

countable transfinite ordinal λ   , such that ϕ(λ) (x) = 0  . 

 

Definition 2:  If ϕ  is a function in B, then  

  j (ϕ  , x), called the ordinal index of the function ϕ, is the limsup, or 

least upper bound of the ordinal indexes for all points in the range 

of  ϕ  .  

 One easily sees that there are two kinds of functions: those in 

which the ordinal index of the function is achieved on a subset S 

of points in the range, and those in which the function index is 

only the upper limit of all the point indexes and is never realized 

at any specific point of the range.  

 One can construct examples of functions of both types, for 

any given countable ordinal λ  . The number theoretic function P 

described above has an ordinal index of ω2, but this is not attained 
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at any point of the domain. If, by convention, one incorporates 0 

into the domain of every function of B, then explicit constructions 

can be done of functions which attain any countable ordinal at 0.  

   Here is a standard construction for doing so. We consider a class of 
functions A = {Aλ}, where λ  is some given c.t.o..  

 Let λ  be chosen. Let Q [0, 1] be the collection of rational 

numbers in the interval [0.1]. We construct a topological 

representation of λ by selecting out a sequence of elements of S 

which mimic the sequence of ordinal numbers converging to λ  .  

S = 1 > r1 > r2 > ...... > rn >...., converging to 0, and to various limit 

points in Q. It is a well-known result that all c.t.o's may be 

represented in this way. Indeed, any order type of countable 

cardinal can be given such a representation.  
 The function Aλ  is now defined as follows:  

  (1)   Aλ   (rk) = rk+1.  

  (2) If rk > x > rk+1 , then Aλ  (x) = rk+1  .  

 In order to represent all c.t.o.'s in this fashion, one must admit 

functions ϕ  which drop down to 0 before reaching the point x=0, 

but this presents no difficulty.  
 The functions Aλ  have the property that the function index 

λ   is explicitly attained at the point x=1. However, by constructing 

a function that attains its function index as a limsup only, and 

assuming the Axiom of Choice, it is even possible to have as 

function ordinal the first uncountable ordinal ω1 !  

  The construction proceeds as follows: A construction 

due to Vitali  decomposes the  interval [0,1] into a collection of 

uncountably many congruent countable sets { Cγ } , everywhere 
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dense in Q , where γ  runs over the Hamel basis . For each γ one 

chooses a different c.t.o.  λ  = f (γ  ). Since the number of c.t.o's is 

Aleph1 , the Axiom of Choice allows that there is some way of doing 

this.  
 The functions A*λ  corresponding to each l, are readily 

constructed in a manner similar to that for the functions Aλ  , above. 

Indeed, one maps Q isomorphically onto each Cγ, guaranteeing 

that the subsequences S will go into representation sets for the 

ordinals λ .  The intermediate points x in each Cγ  will be sent by  

A*λ  into the next representation point on the left.  

❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆❆  

The Dual collection B*  

      The functions in the collection B will converge to 0 from any 

point x under sequential iterations up to λ  , the c.t.o. index of x. 

This suggests a natural correspondence with the dual collection B*, 

of functions ρ  defined on R+ with the property ρ (x) > x for all x in 

R+   . There are many ways of setting up this correspondence. This 

one is based on the natural dualization of the function P(r) = p, r = 

p/q, namely Q(r) = q. Define the operator L* on any function in F 

by  

 

! 

L
*
( f ) = x

1+ f (1
x
)

( f ( 1
x
)

= "(x)

 
When L* is applied to the function Q, one obtains the associated 

dynamical system  

! 

"(r) =
p(q +1)

q
2

 



11.. 

This is dual to the corresponding dynamical system for P(r) =p, and 

converges, after   iterations, to the value r’= p/(q-1) = p’/q’ in lowest 

terms.  

   The dual systems in B and B* are completely equivalent. Since 

one is setting the function f in F  to 0 at 0, this becomes the value of 

f(1/x) at x = ∞. Thus, a system in B* “loops back” to the origin when 

it reaches the end of its c.t.o. function index of iterations.  

 

Contracting functions in the Complex Plane 
 

This analysis no longer works for the class G of functions g (z) in 

the Complex Plane, C defined by the property |g (z)| < |z|.  

Starting from any point z0 in C , the application of  iterations 

to g produces a set H = {g(ω) (z) }, a sub-set of the arc of a circle with 

radius R , the modulus of any member of H.  

Iteration from ω   to 2ω  can produce virtually any closed 

subset in the interior and boundary of the circle |z| = R. The 

analysis of the properties of a c.t.o.  index for complex functions 

requires a separate study, outside the scope of this paper. 

 
Invariant c.t.o. structures  

on the Space FM of all functions 
f: N --> N, N = [-M, M], M>0 

 

 The discussion in the preceding pages can be readily 

generalized so as to give some insight into the c.t.o. index 

characteristics of all functions y=f(x), with  
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domain = range  = N= [-M, M} for some specified bound M.  

 f here stands for any function whatsoever in this class. Let  

(x0, y0) be some point on the graph of f. Since N is compact, the   

collection of iterates {f (n) (x0)} = {xn} = Xf must contain at least one 

limit point in its closure that is in the interval [-M, M]. Let  

S= S(x0 ) be this collection of limit points.  

 Since f can be any function, it need not be continuous 

anywhere. For obvious reasons, one can define  

fω(x
0 )  =  f(S) = S

1
 ,  

the set obtained by applying f to every element of S. Clearly this 

process can be continued another ω times, leading to a set  

S2 =  f2ω(x0), and so on indefinitely. 

Theorems:   
Theorem I : Given the above function f and  

N = range/domain = [-M, M]   as above, there is a c.t.o.  λ such that 

f(λ) (N) = C = f(C) is an invariant domain in N.  

By the method of defining f (λ  )  (N) at the limit ordinals, all of 

these sets S are closed. Therefore the sets  

T = N- S (with the endpoints of N removed), are open. Open sets 

contain a countable number of rational points, each surrounded by 

a countable number of open neighborhoods contained in T, 

defined by circles with rational radii. 

 It follows that each application of f (ω) (S) removes only a 

countable number of rational points from T, which can be 

surrounded once again by a countable number of circles with 

rational radii, contained in T. Such a process must end either in an 

invariant set C, or in the Null Set, in a number of operations given 
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by some countable transfinite ordinal, or c.t.o. . (It would be strange 

indeed, if uncountably many steps were required to exhaust a 

countable set of points and neighborhoods!)  

 Theorem II.  Let x0 be a point in the range N = [-M, M]. Once 

again, define f(ω)( x0 ) as the set s(x0  ) of limit points of  L= {f(n)( x0 )} , 

and  

f (s(x0), as an application of f to the entire set s, etc. Continue this 

process to exhaustion. Let Sλ be the union of all the sets generated 

by this iterative process, up to the c.t.o. λ.   

 Then there exists a c.t.o. γ such that f (Sγ) is contained in Sγ   , 

that is to say, Sγ   contains all the points of N which the process of 

iteration of f on x0 will eventually reach.  

 The proof is similar to that of Theorem 1, with N being 

replaced by the invariant set C, from which, once again, a countable 

number of rational points are removed from C- Sλ at each stage of 

the process.  

  (The following theorem is incomplete. There are reasons to believe 

that it is true, but what is presented here is at best a sketch.) 

Theorem III. Given f , x0 , Sγ  , there is at least one 

minimal 

invariant set I (f, x0) contained in  Sγ. This has the property that 

f(I(f, x0 ) ) = I(f, x0 ) .  

 One modifies the proof of Theorem I, to cover closed subsets 

of a closed set. The details can be added later.  

 Minimal invariant sets are cycles, and the equivalent of fixed 

points for the full generality of functions on a real interval. They 

have the following important property: If y is any point inside a 
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minimal invariant set, J, there exists a c.t.o. λ such that the union of 

all transfinite iterate sets derived from f and y, equals J.  

 The minimal invariant sets thus constitute basic cyclic 

structures intrinsic to the behavior of all functions defined on an 

interval [-M,M] of R.  

 

 

  

  
  

 

 
 

  
 

 

  

 

    

 

 

 

 

 

 
 


