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❆❆❆❆❆❆❆❆❆❆❆❆  

SUMMARY 
      It  i s  shown  that  the conceptual  

structure of the Quantum Theory  is  such that  the 
time derivatives of all  quantities  have an 
intrinsic  uncertainty;  in some sense they are non-
commuting with themselves.  This sets limits to the 
application of  Newton 's  Laws  of Motion  to  the  
microscopic realm.  One way of interpreting this is  
to introduce a "time-dependent"  momentum,( in 
analogy  to  "time dependent energy " ) ,   in addition 
to the  “time-independent”  momentum in 
customary Quantum Theory.   

❆❆❆❆❆❆❆❆❆❆❆❆ 
Introduction 

      Only a restricted  set of classical physical magnitudes 

are amenable to being  “quantized” by the standard operator 

schemas of quantum theory.  We did not need Einstein to tell us 

that God doesn’t play dice to reveal the incompleteness of 

Quantum Theory to us. 1   

     This schema for quantization,  which we may acronymize 

as the “O.S.” , is employed as a mechanical  method for 

“translating” certain classical,  Newton - Lagrange-Hamiltonian 

equations of physics into a quantum operator which can be applied 

                                     
1God of course doesn’t need to play dice: HE runs Las Vegas. 



#2. 
to the Schrödinger wave function,  ψ ,  to produce a probabilistic or 

quantum description. 

     The physicist readers of this article will be familiar with 

this schema: 

The Operator Schema   
(   Quantization   ) 

Position:x, y,z! x•, y•,z•:(" )

Momentum: px, py, pz!(ih / 2# )$() / $x, (ih / 2#)$() / $y,

(ih / 2# )$ () / $z:(")

Energy:E! (%ih / 2# )$ () / $t:(")

 
Those persons not familiar with the Operator Schema ,    

( henceforth abbreviated as the ‘O.S.’), may not be able to 

understand much  of the rest of this paper. However, it is not 

required that one knows much more  about Quantum Theory than 

this , (and the Uncertainty Principle),  to be able to read it for 

pleasure, profit, insight, shock , and so forth. 

    The Inverse   Schema  , ( I.S.), may also be given a 

meaningful interpretation.  To “continuize “ 1 a quantum equation 

is equivalent to the passage, via the Correspondence Principle , 

from the sub-atomic level to the macroscopic everyday world. (For 

persons not familiar with the way quantum mechanics works I 

might explain that, theoretically at least, one can take any 

differential equation that purports to describe the physical world, ( 

mechanical, gravitational, hydrodynamic, electrical, etc.), replace 

every magnitude in the equation by its equivalent operator in the 

O.S., and thereby derive an equation which, in some peculiar way 

that is still a matter of hot debate, describes the microscopic realm.) 
                                     
1Coinage of the author’s. 
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     The Inverse Schema  

    ( Correspondance Principle)  
Position:x•, y•,z•:(!)" x, y, z;

Momentum:(ih / 2#)$() / $x, (ih / 2#)$ () / $y,

(ih / 2# )$ () / $z:(!)" px ,py,pz ;

Energy:(%ih / 2#)$ () / $t:(! )" E

 

           The O.S. and the I.S. are most often applied  in the 

translation of the  Hamiltonian, or energy equation,  back and forth 

from  Classical to Quantum mechanics .In its simplest form,   the 

Hamiltonian is the first integral of Newton’s 3rd Law of Motion: 

                            (1) (1/2m p2 ) +  V(x, t)   = E    

     We  pass  this expression through the  O.S. to produce 

the  famous time-dependent Schrödinger equation: 
(2) ! ((h / 2" )2 / 2m)#2$ +V$ = !(ih / 2" )%$ / %t  

 

    A generalization of the same method produces the 

Klein- Gordan equation, which, in its turn, ingeniously factored, 

produces the Dirac equation for a free electron. If one   then 

attempts to apply the I.S. to the Dirac equation, the results are not 

very satisfactory; yet, by the use of a bit of “inverse ingenious 

trickery” , one can get out the classic relativistic relationship of 

energy to momentum: 

                          (3)    E2    = c2 ( p2  + m2c2 ) . 

  When  there is no reason for using  the actual values of the 

speed of light and Planck’s constant, we will choose our units in 
such a way that  c = h/2π    =  1.  

         Despite their proven power in terms of creating a vision 

of the sub-atomic domain ,  as an aid to our thinking , and as a way 

of making calculations and predictions, the O.S. and the I.S. fail 
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dramatically when applied to those equations which are most 

fundamental to all of physics,  Newton’s Laws of Motion: 

                                  (i )    p  =  m dx/dt  =  mv  
                                  (ii)    F  = m α    = dp/dt 

 The failure of the O.S. when applied to equation (ii)  in 

particular  means that the Newtonian vision of the cosmic order 

breaks down completely when applied to the quantum domain. 

This observation, which may be obvious to some, yet which is far 

from elementary, means among other things that any viable form 

of Quantum Gravity must await a substantial improvement in our 

mathematical description of the structure of the cosmos. 

     Let us examine equation (ii) first:  The O.S. is  applied in 

such a fashion that  a string of multiplications on the “quantitative” 

side is translated into a chain of functional iterations on the 

“operator side: 
 (a)  x2  ----------->  X2 •/ ψ  
 (b)  px2 =m2 ( dx/dt)2  ---->  i∂  /∂x  ( i ∂(   )/∂x ) :( ψ) 

 = - ∂2 (  )/ ∂x2  :( ψ)  

(c) x. p ------->  ix ∂ (  )/∂x :( ψ)  

(d) px------->  i ∂ ( x  )/∂x  =  ix∂ (   )/∂x + i • :( ψ)  

     The  last two relations, (c) and (d) show that the O.S. is not 

even, strictly speaking, even  linear , since subtracting (c) from (d) 

on both sides gives us : 

              (4)                 0 ---------------------->  i 

 :A rather striking  way of stating the  Uncertainty Principle! 

   Clearly any   application of the O.S. to acceleration must be 

ambiguous. What happens when we attempt to quantize     

α    =  d 2 x /d t 2  ?  No  iterations of the differential form , 

d/dt on the left side have any  interpretation in terms of either 

iterations or multiplications of partial differential forms on the 
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right. Certainly, the continuizing of   ∂2 (  )/∂t2  by the I.S. will not 

yield anything remotely resembling acceleration: 

            (O.S.) 

∂2 (  ) /∂t2 -------->   - E2   (!??) 

  As for equation (i), it presents special problems  since 

momentum , like space   and time  , is an irreducible primitive in the 

quantum theory.1   Mass   is a parameter, while  dx/dt is the ratio of 

two commuting quantities, x and t, and therefore, in theory, not 

restricted by the Uncertainty Principle.   

 From the standpoint of quantum theory a better  form of 

equation (i) i s  : 

                           (iii)  m   =  p/ (dx/dt)   

   In this equation  the right side contains the  3 primitive 

notions, space, time   and momentum , while  mass   is  defined 

indirectly in terms of these. 

       However: we are going to take a second look at this 

situation . Through a return to the conceptual images that lie at the 

basis of all quantum descriptions , we will discover that there is a 

measurable uncertainty associated with the velocity v = dx/dt,   

dependent only on the uncertainty in t .  We will then apply this 

perspective to acceleration. The results are  quite  interesting. 

 
II. Taking The Time Derivative 

       The Ansatz   for  finding the first derivative  of a function 

,x(t), is   familiar to all of us  since the time of Isaac Newton. Letting 

t be the independent variable,  one  chooses two moments very 

                                     
1In contrast, for example,  to the situation of Special  Relativity , 
where momentum  is a derived quantity. 



#6. 
close to one another, say  t and t+ ε  . After measuring the two 

quantities  x( t) and x(t+ ε) ,  one  forms the ratio        

                (5)        [x(t+ ε)  - x( t)]/ε    =   Δ  x / ∆t 

         A pure  mathematician can imagine that the time 
increment  ∆x   = ε  ---> 0 ,to derive the exact form of the derivative. 

In the  ( classical ) physical world however, it is sufficient to choose  
ε   to be so small  that any further reduction may be treated as 

negligible. The success of this approximation depends in turn on 

assumptions about the continuity, differentiability and degree of 

smoothness of the  function x(t) . Thus  pure mathematics gives 

way to approximate mathematics, which in its turn devolves on 

matters of pure mathematics. As the woman said in the famous 

retort to Bertrand Russell:  " It's turtles all the way down!" 1 

       Yet  the conceptual images of the Quantum Theory  are 

radically  at odds with this methodology . The very act of taking the 

initial measurement , at time t, of the location x of some particle Q, 

of mass m,  so perturbs  both the position and the momentum of Q, 
that the   second measurement at x ( t+ ε) , cannot possibly have any   

continuous relationship to x ( t ) !  

    The situation is not hopeless, because the Uncertainty 

Principle gives us a way of estimating the size of  this perturbation.  

Let’s say that the initial measure of x(t) has created displacements 

in the position and momentum of Q by the amounts dx  and dp . 

         By the Uncertainty Principle  we have: 
                    ( 6)      dxdp  ≥  1/2 ( Assuming, as usual,  h/2π  =1 )  

    After a time interval , ε , the uncertainty in the displacement 

, x ( t+ ε) , will contain a term for dx , and also a term D derived 

                                     
1See Stephen Hawking’s thoughtful and funny  book, 
 “Brief History of Time”; Bantam,1988 
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from the uncertainty in the momentum which is given by  D =  (  ε  

dp )/ m. 

  We therefore write:  
                  (7 )    x (act) ( t+ ε)  =  x(hyp) ( t+ ε  )  +  dx  + D  ,  

where    x (act) is the estimated actual value of the new location,  

while  x(hyp)  is the value it would have had   if the first 

measurement had not been taken. (For the present discussion we  
ignore the value of  d x(hyp)  ( t+ ε) .   

  One has: 
           (8)  x (act) (t+ ε)  =  x(hyp)  ( t+ ε)  +  dx  + D                       = 

x (hyp) + {dx + ε  dp/m}  >    x(hyp) +  dx  +   ε/(2mdx)     

, the final term on the extreme right coming from the  

Uncertainty Principle .Form the differential expression for x : 
         (9)  Δx/Δt  =   (1/ ε  )( x (act) ( t+ ε)  -  x(t))   

                                             >  1/ ε(   x(hyp)( ε)  -  x(t) )  + D/ ε   

   which is a first approximation to  dx/dt + { dx/ε  + 1/2mdx)   

              = dx/dt  + µ   , 

where  µ  = dx/ε  +1/(2mdx)  will be called  the intrinsic 

uncertainty in the velocity ,(or  time derivative ). 

       Let  dx   = z  , and calculate the minimum for z > 0 , of the 

expression          
       ρ    =   z/ ε   +  1/(2mz)  .  

Taking the derivative one obtains: 
                     (10 )      ρ ’ =  1/ ε  - 1/2mz2=0   

Solving this gives   zmin   =  √(ε/2m)  , and, substituting in 

ρ ,we get ,finally:  
                      (11)     ρmin     =   √(2/(mε))   . 
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 For the statement of our first theorem reintroduce  h/2π  : 

 THEOREM I:   The uncertainty in the expression,   
                                     ( x(act) - x(t) )/ ε    =  Δx/Δt ,   

                                      is at least  µ = √ (h/πmε)   .  
     As  ε  --------> 0 , this expression goes to  ∞  . The precise  

time derivative at the initial moment, t, must therefore be 
acknowledged to be unknowable. If  ε is too small,  µ   will become 

too large, and if ε  is too large, then x will be too far away from the 

first derivative to be of any use. We can actually estimate, for a 
given situation, the best value for  ε  : 

     THEOREM II:  The best estimate for the increment  ε   is 

found at  the place where the product   of the differences of x from the 
hypothetical values of x '   at t  and at t+ ε   , is equal to the square of 

the uncertainty, µ  . 

     PROOF:  We seek to minimize the expression 
                         (12)       Σ  :    (x’(t+ε  ) - ρ) 2 +  (√(h/(πmε))2  

, over  the variable  ε .  . 

Here,  ρ  =  (dx/dt) (hyp)  is the  time derivative which we 

assume   to “exist” in some sense,  in a pre-measurement reality.  

Then, 
                  (13)   1/2dΣ/dε    =  ( x’-ρ) x ‘‘  +  µ µ '  = 0  

                              µµ  '   =  -h/ m ε2 

Assuming that ε2 will be conveniently close to zero, we 

invoke the ‘ideal approximations’ :  
 (a)   x’’(t+ε) ≈   -( 1/ε2 ) [ εx'( t+ε  ) - {x (t+ε) - x(t) } ]  ;    

 (b)   x’(t+ε) - ρ   ≈  [  {x(t+ε) - x(t) }/ε   ] -  x'(t) 

  Juggling the terms around a bit leads to the expression:  
                (14)        (  x -  x'(t+ε) ) ( x - x'(t) )  = h/(2πmε) 

, which proves the theorem. 
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 This result is somewhat academic , as it implies that one 

must know the theoretical  behavior of x’ in this part of its domain 
in order to derive a “best value” for ε . , i.e., that which gives the 

best approximation to x’ at t.  The theorem does show however, that 

a “best value” does exist when the above equation can be solved 
for ε . Since so much of quantum theory is based on thought 

experiments, this situation frequently arises.  For example, if one  

makes the assumption that  the displacement,  x , is a quadratic 
expression in the time , t, then equation (14) becomes linear in ε   on 

the  left side.  Solving the resulting equation gives  at most 2 values 
for ε  .  These values might be used  to test our hypothesis of  a 

quadratic dependence  of x on t . Note that this is the best test that 

we can make of this hypothesis.  
 III. Acceleration 

              Epistemologically, the correct form for Newton’s 3rd 

Law of Motion is  

                                    (15)  F     = dp/dt 

                 Only rarely does mass  , per  se, enter nakedly into 

physical theory. The concepts of energy, momentum   and inertia  

are far more fundamental .Any measurement of  mass is dependent  

on them . They are also  the quantities  which our  senses  record  as 

intensities , which, on the basis of various theoretical assumptions 

,are then interpreted to give  a parameter for mass. 

 This is very convenient for the treatment given in this 

paper. Attempting  to deal with  the uncertainty relationships in  an 

expression such as  

                                       (16)  dv/dt =  [ d (dx/dt)/dt ]    ,  

                is bound to run into serious  complications, whereas 

the  intrinsic  uncertainty   in the time derivative of the momentum  
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dp/dt can be treated directly  in a manner homologous with  the 

previous estimation of the  uncertainty in the velocity.  

 Proceeding as before , an initial measurement of p at time t 

will have a margin of error dp , and an additional displacement 
error of dx .   After  performing  a second measurement at time t+ ε  , 

we add on these two displacements  ,   

    (i )  dp , and 
    ( ii) a term λ   =  mdx/ ε  . Then,  

           (17)        G  =  (p(act)  (( t+ ε  )  - p(t)) / ε    >   

  {( p(hyp) (  t+ ε  ) - p(t) )/ ε  }  + {  (dp + m dx/ε   )/ε}   

  =   β  +  φ  

where  β  is the measurement of the acceleration, and φ  is its 

uncertainty.  Once again  we apply the Uncertainty Principle to 
convert the final  term into an  expression in dp . Let  ω  =  dp   

  . We wish to minimize  φ   =  dp/ ε  + m/2dp ε2  over  ω  . This 

leads to : 
            (18)  φ   ’ =  1/ε   -  m/(2ε2ω2)   = 0 . Solving:  
            (19) ωmin  =  √m/2ε , and φmin = √(m/2ε3).  

     We once again reintroduce the letter, h/2π , and express our 

result in terms of the force, F   =  mα    

 THEOREM III : The uncertainty in the determination of 
force at the quantum level, over a time interval ε  ,  is given by   

 φ  =  √(mh/4πε3). The uncertainty in the acceleration is 

therefore(1/m) φ  = √(h/4πmε3). 

   Once again, we   seek   “best values “ for β  and ε  .  

Our  method is  homologous in all respects to that used in deriving 

the equivalent value for the velocity.  The  result is: 
        THEOREM IV :   The product of the differences   of  β  from 

the hypothetical values of dp/dt  at t and at  t + ε    , is equal to  

 3/2 x  φ ,   the  Uncertainty .   
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 Interpretation 

       One may interpret these results  by  positing  two kinds 

of quantum-theoretic momentum: time-independent  and time-

dependent  . This has the effect of:   

                                   (i)   Putting the momentum on a par with 

the energy,   which also has time-independent and time-dependent 

forms1, and 

                                   (ii)  highlighting even further the 

incurable ambiguity of the  status of  time in the quantum theory.  

Depending on how it is used, time is either (i) a parameter, or (ii) a 

variable commuting with space but not with energy. 

        (A)   Time-independent momentum:  This is the form 

which can be in some sense measured instantaneously : an electron 

smashing into a plate  and leaving some kind of indentation, or a  

blackened spot on a photographic film, the intensity of the 

blackening  being a measure of the instantaneous momentum of 

the collision. 

  (B) Time-dependent momentum : This is the quantity that 

occurs in the expression  p = mv ,(or p = mv/√(1-v2/c2) .It is not 

measured by some kind of instantaneous impression on a 

recording medium, but  through  taking a reading of the positions 

of a particle of known mass at two infinitesimally close points in 

time. It is this velocity which has an intrinsic uncertainty . 

     These distinctions should find some application in Special 

Relativity as well:  here time-independent momentum is something 

of a fiction, as it may be modified, even removed entirely, by 

changing the reference frame of the impinging  surface of contact. 
                                     
1Recall that energy and momentum are linked through Special Relativity as the 
temporal and spatial components of the same 4-vector. 
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Time-dependent momentum, however, is  reference-frame 

invariant, like zero-point energy, which it resembles  to some 

extent. 
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