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Abstract 
 A transfinite sequence , 

 s = s0;s1;s2;. ....  

is proposed. These are defined by the set of relations 

  

 After a discussion of the natural  arithmetic properties of 

this series , we restrict our attention for the most part 

to for which several models, combinatorial , algebraic, 

geometric and analytic are proposed  .  

 The  combinatorial model is derived from  the properties of  

collections, called “mixets”,  mixing distinguishable and 

indistinguishable elements. A bivalent cardinal is defined for 

them. A sequence of representative mixets is constructed on 

which a natural extension of the power set operator can be 

inverted on any cardinal. The inversion on the representative set 

for  K0 produces the cardinal   . 

  The geometric model for is based on a construction 

on Hilbert Space called a  -hedron , ( sigmahedron)  . Its 
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construction raises some questions about the ontological 

viability of Hilbert Space as an object of geometry. When 

speaking about a  countably infinite dimensional Hilbert Space H 

, one must recognize that there can be no “internal evidence” 

distinguishing H from any of its proper countably infinite 

dimensional  linear subspaces.  

 We call this the : 

“Principle of Relativity for Infinite Dimensional Hilbert Space”. 

This principle of relativity can be expressed in the language of 

mixets. Plausible arguments show that the cardinal number of the -

hedron is indeed .  

 The last model is analytic, utilizing   the coefficients of the 

collection of Fourier series defined by the vertices of  

the -hedron. 

  

Introduction  

 

 “Mathematics is purely hypothetical; it produces nothing but 

conditional propositions. Logic, on the contrary , is categorical in its 

assertions.” - C.S. Peirce 

  The cardinal number of the power set P(S)  of a finite set S is a 

simple function of  the cardinal number of  S .  

Let  #S = cardinal number of S, #P (S) = cardinal number of P(S) . Then  

 Theorem I (Classical): #P (S) = 2#S 

 Corollary: #P (S) > #S for all finite S, ( including the null set,  ) .  

 The extensions of this corollary via the  Cantor Diagonal 

Construction, are the foundation from which all of transfinite arithmetic 
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arises. As it is neither  a definition nor a theorem in its own right, the 

extension of  Corollary 1 into transfinite arithmetic  should properly be 

stated as an axiom: 

 Axiom I : If T is any  infinite set well-defined by the Zermelo-

Fraenkel axioms , and  P(T) is its power set, then 

#P (T) > #T 

 The customary notation,   #P (T) = 2#T , is an arbitrary , not entirely 

satisfactory convention for infinite sets. The Continuum Hypothesis 

renders it even more questionable. We will assume the Generalized 

Continuum Hypothesis in the paper (Jech, pg. 46) because (i) it is not 

directly relevant to the constructions presented here, and (ii) doing so 

simplifies the arguments. However, we will not assume that 

Sierpinsksi’s Theorem ( GCH ---> AC ; Smullyan and Fitting, pg. 109) 

applies to the special class of ‘pre-countable’ transfinite sets that we will 

be considering.  

 Other properties of  #P  for sets, finite or transfinite, are : 

  (i) If  #X = #Y , then 

   #P (X) = #P (Y)   

  (ii) Conversely,  

   #P (X) = #P (Y)  ----> #X = #Y 

 (ii) is perhaps open to question. It is not easy to see how one goes 

about proving that infinite sets of different cardinalities must produce 

power sets of different cardinalities. Although a 1-to-1 correspondence  : 

A--->B induces a natural 1-to-1 correspondence    *: P(A)--->P(B) , it does 

not automatically follow that any 1-to-1 correspondence  

P(A)--->P(B) must   be invertible into a 1-to-1 correspondence  

: P(A)--->P(B) . However we will assume it here.   
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 These properties enable us to define a function (n) explicitly  on 

the class of cardinal numbers, C .   

  If X be a set of cardinal n, P (X) its power set, then  

(n) = #P(X) = m, where m is  independent of the choice of X.  

 Theorem 2 : #S finite -----> #P (S) finite 

    #P (S) finite -----> #S finite 

    # S infinite -----> P (S) infinite 

    # P (S) infinite -----> S infinite  

 The proof follows from Axiom 1 and because  is always 

considered to be larger than  when is infinite and  is finite.  

 Corollary: “ Finitude” and “ Infinitude” are invariant under both 

the power set operation and the inverse power set operation, ( defined on 

the range of P  ) .  Designating the lowest transfinite , #Z+,  by the 

symbol  K0  , (Aleph-naught) , a sequence of higher  transfinite numbers 

can be generated from the cardinals of the  iterations of the power set 

operator acting on Z + , and on their  limit sets. There may exists other 

processes which generate other transfinite series; we will be looking at 

one of them in this paper. This series K0, K1 , K2 , ..... will be referred 

to as the standard sequence .  

 Observation : The sets in the standard sequence are all either 

power sets or limit sets of power sets . With the sole exception of K0 , 

their cardinals are either of the form C = P(c)), c being the previous 

cardinal, or  . Some subtleties arise from the interplay 

of cardinals and ordinals. From the perspective of cardinal arithmetic one 

can say that  K1 = #P (K0) . From the perspective of ordinal arithmetic 1 

is the limit of limits of polynomial sequences of the form Sa jv
j
. If, as 
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in Jech’s “Set Theory”, cardinals are defined  as limit ordinals (pgs. 25-

28;38-39) no problems arise. But as we intend to show here, this 

identification is an over-simplification.  

 

 Theorem III : With the exception of K0  , all infinite cardinals 

derive from  an iterative or a limit process on other infinite cardinals. 

 Question: Where does  K0   come from?  

 

Making that question meaningful 

 There does not exist, in standard set theory, a set S with the property  

that its power set is countably infinite.  This property distinguishes  K0  

from  the transfinite cardinals that follow it. The next cardinal with the 

same  property is  K: we will not be looking at the higher limit 

cardinals in this paper. The situation invites speculation: might there 

exist a natural generalization of set theory which allows for the inversion 

of  on K0  ?  Another means for invoking this possibility is to note that 

all infinite sets with cardinalities greater than  K0  have proper subsets 

that are also infinite but of lesser cardinality . Now that we have learned, 

( thanks to the inspired  investigations of our colleague, Georg Cantor), 

that the  “Infinite “ has a hierarchical structure, there  exist neither 

axiomatic nor intuitive reasons for asserting that it  has to have an abrupt 

starting point at the first transfinite , K0  .  

 

 Arithmetic Properties of the    -series 

 It is a simple matter to demonstrate that extending  the standard  

transfinite sequence  with the sequence of  weakly infinite cardinals , 
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{  j }  is consistent with the algebraic structure of  transfinite arithmetic. 

The more difficult task is that of extending standard set theory itself to 

include a set with  as its cardinal number.  

 Once this is done it will be relatively straightforward, through back 

reconstruction and iteration on the process  : K0  --->   to construct 

models for the chain of weakly infinite cardinals,  An 

example of the way in which this construction might be carried out is 

sketched in another section.   

 An obvious requirement for the  weak transfinites  is that addition, 

multiplication, and exponentiation  be compatible with  transfinite 

arithmetical logic . I say “logic” rather than “laws” , as the structure of 

this arithmetic is, somewhat arbitrarily, based on generalizations upon 

the  elementary properties of one-to-one correspondence.  

 The principles of this logic are :  

  Let  ,  be ordinals 

  Let N be any finite cardinal ( positive integer) 

Then:  

  (i)   <KKK

  (ii) <KKK

  (iii) <KKKKKK

  (iv) KKKKN times) K

  (v) KKKKN times) K

  vi) KK

 Addition and multiplication are commutative, associative and 

(trivially), distributive. Indeed, any algebraic expression involving trans-

finites, as long as they do not appear in the exponents,  is equal to the 
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transfinite of highest index in  the expression.  

 Since the weakly infinite cardinals ought to be “stronger” than the 

integers,  the natural extension of this structure is :  

 

 It is easily shown that the initial segment of the standard sequence,  

( including Z+ and all the transfinites up to but not including K ) , can 

be consistently extended to include an initial segment of the weakly 

infinite cardinals, by means of  a representation,    , onto a semi-group 

acting on the set:  

Z+ Å Z0
-Å Z0

+

Z+ = 1,2,3,....,n,... .

Z0
+ = 0,1,2,3,....,n,. ..

Z0
- =....-n,-(n -1),....-2,-1,0

 

This set can also be notated as: 
AÅBÅC

= 1a , 2a ,... na ,...;... mb , m-1b , ... -1b , 0;b 0c , 1c ,.. ., kc , ...
 

 

The representation then becomes: 
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The structure of the semi-group on the letters a , b, and c is given by:  
al + ah = al+h

al · ah = alh

2a
l

= a
2
l

q ÎBÅC, then

qa j = q

q + a j = q

q £ p® q + p = p,qp = p

2
bm = bm-1

2
b0 = c0

2ck = ck+1

 

 It is self-evident that this semi-group is well-defined.  

 

Infinity, Actual and Potential 
Finitism revisited 

 The sequence S=   { j }  furnishes us with a new particular solution 

to the ancient, ( Zeno-Aristotle) , antinomy of potential versus actual 

infinity. This construction:  

   (i) Eliminates  the philosophically dubious assumption 

that the limit   of the finite cardinals  is   K0  ( It does make a certain 

amount of sense, however, to use this terminology for ordinals, defining 

the first transfinite ordinal,  ,  as the limit of the finite ordinals. The 

concept of a limit enters naturally into any ordinal process. )  
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   (ii) “Actual” infinity can be restricted  to the hierarchy 

of transfinites,  BÅC . “Potential” infinity pertains to  statements 

involving the elements of Z .  

 It makes sense to us to posit that the  infinite  cannot  be reached 

via a limit process on the finite. From this perspective,  the expression 

lim nf

n®¥
 is not well defined. On the other hand, an expression something 

like lim nf = f ,if f - fn < e,n > N    

is   well-defined, as are statements such as  
lim sin z

z
z® 0

= 1  

, since these involve infinitesimals. Infinitesimals have to do with 

continuity,  the infinite with counting, which are very different ideas. 

The infinite ought not to be definable directly in terms of any finite 

process, although some of its attributes may be defined fin terms of  

what the finite is not.Thus, one may   continue to employ the fiction z--> 

∞ , as a kind of short-hand for w --> 0 , w = 1/z .  

Mixets 

 The representation of distinct  unordered repetitions of identical 

elements has been considered  paradoxical in European philosophy since 

100 B.S. 1  Consider the familiar paradigm of Buridan’s Ass:  

 ‘ Buridan’s ass....a hypothetical dilemma in which a person is 

postulated as presented with two equally attractive and attainable 

alternatives and thereby loses freedom of choice.  “  (Webster’s Third 

International Dictionary, 1981) . 

 The  14th French philosopher Jean Buridan managed to hold onto 

                                         
1Before Socrates.  
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good jobs in the academic world, even after William of Ockham placed 

his works on the Index. Indeed, much of his professional  life was 

wasted in engaging in spite wars with William of Ockham, inventor  of 

the  metaphor of “Ockham’s Razor” , the elimination of arbitrary or “ad 

hoc” hypotheses from scientific theories. 2 The couplet of metaphors  

“Ockham’s Razor” and “Buridan’s Ass”  form an antinomy,  that of 

Action/ Inaction, in the sense of Kant.   

  Although such objects are not readily picturable  they are at 

the foundations of  a good part of all of the hard sciences:  mathematics, 

physics, biology and chemistry.  Examples:  The equation w = (z-  )k   

has a single root, repeated k times. When talking about one of these roots 

, it makes no sense to refer to  its ‘place’ in the sequence of roots. 

However, the binomial expansion of this equation provides us with a set 

of coefficients c j = 2k (
k

j
) = 2kk !

j!(k - j)!  which are in general 

distinct , and   come with a natural ordering  provided by the exponents 

of the developed equation. Thus, finite sequences of indistinguishable 

quantities can serve as the basis for finite, or even infinite, ordered 

sequences of distinguished elements. Among these we identify several 

kinds: 

 (i) Totally ordered sequences.  The elements may be identical or 

distinguished  , but ordinally arranged, as with the set of the coefficients 

of the polynomial 

y = xn + xn-1+....+x +1 

 (ii) Sets of distinguished elements which cannot be ordered.  One 

                                         
2William of Ockham must have been careful to avoid a too rigorous application of his razor 

so as not to be burned at the stake for atheism! 
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may call these “dual”, or “adjoint” sets. The prime example of this 

phenomenon is the couple √-1 = ( i. -i ). The assignment of the minus 

sign is arbitrary. There cannot, in theory, be any reason for stating that 

one of these two roots has any claim to either the plus or the minus sign. 

As we know , this is not true of the pair, 1, -1 , in so far as 1x1 = (-1) x (-1) 

= 1 indicates an essential asymmetry between them. 

 (iii) Sets of distinguished elements, each accompanied by a 

(potentially infinite) list of unique or exceptional characteristics.  These  

may be ordered, partially ordered, or unordered. This description applies 

certainly to the integers, 0,1,2,3,.... each one of which appears to abide on 

a different planet, but it can also apply to the something like the set of 

all bounded real functions on the interval [-1,+1] to which no direct 

scheme of total ordering can be applied. ( All indirect schemes depend 

on one’s commitment to the Axiom of Choice.)   

 Definition: A  mixet  shall be a finite or infinite mixture of  

distinguished, and undistinguished elements. Another way of stating 

this is to say that  a mixet consists of distinguished elements and their 

multiplicities. Q = (a,a,b,a,c,b,b, d) is a mixet. In certain instances the 

ordering is important, but in general we shall be concerned with 

unordered mixets, so that Q can also be written  as (a,a,a,b,b,b,c,d ). 

 

Presentations 

 Consider mixets of the form  M = (a,a,a,a,a) .  It may or may not be 

reaching to the outer limits of casuistry to suggest that an Axiom of 

Choice may be required even for such sets - particularly in those 

situations in which the content of the anonymous entry , “a”, is 

unknown and can be only determined through an act of choosing .  
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 A philosophical philanthropist tells you that there are five exactly 

identical gold pieces in a box. You’re invited to reach inside the box,  feel 

around without looking , and pull one of them out. You do so, retrieving 

a valuable coin worth  $1,000.  

  You can keep the gold piece he says , on the condition that you can 

tell him which of the five pieces you’ve chosen! You argue that there 

can’t be any way of doing so because, by hypothesis, the pieces are all 

absolutely identical. He replies: “ How is it, therefore, that you were able 

to select just one of them and none of the others?” 

 The argument goes back and forth. Finally he announces to you 

that you will be allowed to keep the gold piece, provided you help him 

in the solution of this philosophical dilemma, which has kept him awake 

for several months! A few weeks later you return with an Axiom. Your 

benefactor is satisfied and lets you keep the gold piece. 

 What is your Axiom? : 

 

Axiom of Choice for Mixets ( finite or in finite): 

 A mixet S is not well-defined  unless an ordinal for  S is 

implied in its definition.  

  

 In this particular case the presentation consisted of the way in 

which the coins were placed inside the box. The box, which is basically a 

reference frame, bestows  a unique identity on each coin where none existed 

before. Take away the box and it will be impossible to make a selection of 

even one of the coins.  
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 Definition: A mixet S is “ presented”  when its  definition  

asserts  ( with or without constructibility ) , the existence of an 

ordinal of the same cardinality as S , together with a 1-to-1 

correspondence between and the elements of S. 

 Example: Again consider the equation  w = (z-2) 5 . This has five 

roots, all of them “ 2 ” .  We can create a presentation of this root mixet by 

forming the derivatives of w. Since w’ = 5(w-2) 4 , we can argue that the 

first   root of w is the one that disappears from the root mixet of w’ . 

Clearly, for a finite mixet, if there is a systematic way of distinguishing 

just a single element in each sub-mixet , (essentially a ‘choice function’) 

one will obtain a presentation of the entire  mixet through induction. For 

infinite mixets one needs  Zermelo’s Well-Ordering Theorem.  

 All presentations of a finite mixet are equivalent.  There is a natural 

isomorphism between the ordinals associated with all the permutations 

of a ( presented) finite mixet. One may make a further distinction 

between mixets whose presentation ordinal can be constructed, and 

those for which there may be at most an existence proof for this ordinal. 

The former may be called ‘presented’ sets ( mixets) , the later 

‘presentable’ sets (mixets) .   

Example:  The set of computable real numbers C is not recursively 

enumerable, yet it is known to be countable. C, therefore, is ‘presentable’ 

but cannot be ‘presented’.  

 The paradigm for finite presentable mixets which we will be 

employing in this paper, is that of the vertices of the   - hedron T , in n-

1-dimensional space. ( v being the Greek letter for n . Thus ‘tetrahedron’ 

in 3-space , ‘quintahedron’ in 4-space, etc.  ) ,  

 The set of vertices VT , of the -hedron T , is presented   whenever T 
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is positioned relative to a frame of reference. In the absence of any frame 

of reference,  VT  is unpresented  , but then it is still presentable   by our 

above definition and is well defined as a mixet.   

 This point is in need of further clarification. 

Relative to any reference frame in n-space, the vertices of the 

corresponding -hedron are certainly distinguishable. Given one set of 

vertex specifications ( v1, v2 , .....vn+1) , one may, by a combination of 

rotations and reflections, produce another representation  ( v(1), v(2 ), 

.....v(n+1)) , where  is any permutation on n+1 indices.  If we eliminate 

the reference frame and try to speak of the intrinsic properties of the-

hedron , then we can say that all of its vertices are n-fold 

indistinguishable   , meaning that there is no property of any subset of k 

vertices , k< n , which is not also present in any other subset of k vertices 

of VT .   

Bivalent Cardinals 

 Let B be any mixet: 

Definitions :  The internal cardinal    iB  , is defined as the number of 

classes of distinguished  elements in B. 

   The external cardinal  ,   eB , is the total number of 

elements of B, counting multiplicities.  

 The bivalent cardinal  , or simply cardinal  , of B, is defined as  

   #B = (  iB , eB )  

 Examples: 

  (1) S = (a,a,a,b,c ) 

   iS = 3 , eS = 5  ,  #S = (3.5) 

  (2)  R = (  a,a,b,b,c,c  )  

   iR = 3  , eR = 6  , #R = (3,6)  
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  (3) T = (a,b,a,b,a,b, ....... ) . Lacking  a presentation for T, we 

can say nothing about the external cardinal, but the internal cardinal is 

given by iT = 2 

  (4) U = (a,b,a,a,b,a,a,a,b,a,a,a,a,b,....................) 

In the case the mixet has a built-in presentation. We have 

   iU = 2  ,  eU =  K0  , #U  = (2, K0 )  

 This definition of a bivalent cardinal for mixets will be sufficient 

for the arguments in this paper. 3  

 

The Power Set Operator On Mixets  

 Definition: If M is a mixet, then we define P (M) , the power set of 

M , as a collection of all the distinguished subsets of M, (including the 

null set)   

 Example:  Let S = ( a,a,a,b,c). Then  P (S) = {  , {a} , {b}. {c} , {a,a} , 

{a,a,a} ,  {b,c} , {a,b}, {a,c} , {a,a,b} , {a,a,c}  , {a,a,a,b}, {a,a,a,c}, {a,b,c},   

(a,a,b,c}, {a,a,a,b,c} )  

 This definition of the power set of M coincides with the usual 

definition of the power set when M is a set.  

  The cardinal of the power set of a mixet can be any integer: 

 (1) U = (a,a,b)   ;   P (U) = (, {a}, {b}, {a,a}, {a,b}, {a,a,b} )  

    # P (U)    = 6 

                                         
3For finite, unordered mixets, one can construct a univalent cardinal which gives more 

information. Suppose that a finite mixet K is composed of elements a1 , a2 , .... aq , with 

multiplicities m1 , m2 , ....., mq . We can then assume that K is so arranged that  m1 ≤ m2 

≤, .....,≤ ml . Define the cardinal  nK as the composite product = 2m1 . 3m2 . .....plmq , 

where pq is the qth prime number. nK will be unique for a given distribution of 

distinguished and undistinguished elements. Then iK = q  ; eK = (1+m1 ) (1+m2) . 

.....(1+mq) =   (nK), where  is the Euler -function.  
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 (2) V = (a,a,b,b,c,c) ;  P (V) = ( , {a} , {b}, {c},......)   

     #P (V )  = 28 

 In general , if the multiplicities of the elements of a mixet M, are  

n1 , n2 , ...nk , then # P (M )  = (1+n1 ) (1+n2) ....(1+nk) + 1.  

 

Homogeneous Mixets   

 Let  
1),...,(  


n

n aaaA , ( with n = 0 for the null set). These will be 

called ‘homogeneous mixets ”. The  collection C of all of these for finite 

n can  be enlarged to include the (presented) mixet  
nKA . In general we 

see that the inner cardinal of a homogenous mixet  is iAn = 1 , the outer 

cardinal is eAn = n, while the cardinal of the power set is #P(An) = n+1, 

 Because of our way of defining the power set operator, P, there is , 

associated with C , the set of its power sets, designated  

S = { P(An) = { Zn } ;  
 

,.....)3,2,1,0()( 00
 ZAP K  

 Taking SC     as our universe, we see that: 

   (i) The cardinals of the power sets of the elements of C 

can be any positive integer. 

   (ii) The power set operator, P, can be inverted from any 

set of S  back to C . 

   (iii) Z is the power set of 
0KA  

   (iv) The cardinal of Z is K0 .  

 We  therefore assign,  to the set  
0KA  , the cardinal . This mixet, 

which we call the  -mixet , shares properties both of the singleton {1} , 

and of Z.  
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The  - hedron 

Introduction:  

 Let K be any set of cardinality c. Zermelo’s well-ordering theorem 

says  that there exists an ordinal of cardinality c.  It can be argued that 

this does not mean that K can be well-ordered.  In order to say that K 

itself can be well-ordered, one must assert that any  arbitrary process of 

selection must   terminate in some  ordinal of cardinal c, without any way 

of knowing which ordinal that will be. Indeed, knowing  which ordinal 

one will end up with means that K must have been pre-counted, which is 

circular reasoning. If one cannot say which ordinal the process will 

terminate in, how can one say that the process must terminate? 

 Geometry is the study of distinguishing relations between 

indiscernibles. The prime characteristic of space is its homogeneity. This 

is not problematic when the number of dimensions is finite; yet owing to 

the fact that in a countably infinite dimensional Hilbert space, a rotation 

can be equivalent to the addition of a new dimension, one must allow for 

the existence of certain ‘pre-countable’ infinite sets, such as the collection 

of vertices of the -hedron. Indeed, the term “ pre-countable transfinites” 

may turn out to be more suitable to the description of the series { j } , 

than the term ‘weakly infinite cardinals’ used in this paper.     

 The -hedron is a K0-simplex constructed  in a given Hilbert space, 

which is then cut free of external reference frames. This object is 

countable, by construction. Yet any counting process will fail to cover all 

possible vertex collections 

 . It may be the case that the-hedron provides a simple model for 

the independence of the Axiom of Choice from the rest of Set Theory.  
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Reference Frame Independent Simplexes  

in Finite Euclidean Spaces 

 Let T3  be a regular tetrahedron in 3-space, considered intrinsically 

in the absence of reference frames . T3  is given sequentially to the  

members of a board of  examiners . Each examiner takes T3 into an 

isolation cell,  ( thereby assigning it a reference frame) .  After 

completing their investigations each of them writes up a report which is 

handed in to the office of the project manager. Here the data is 

assembled and analyzed. The final result is a document issued in the 

name of the collectivity.  

 Among its conclusions one finds  that there can exist no way of 

knowing if the order in which the vertices were inspected by one of the 

examiners is the same, or different, from that of  the others. There are 24 

different ways of ordering the set of vertices but no way of knowing 

which of them was used. 4   Only with the tetrahedron right in front of 

them, is there a  way of comparing their systems of labeling. 

 There was still quite a lot that they could agree on.  

  (1) Each examiner counted 4 vertices, in the order “1” , “2”, 

“3”, “4” . Both the cardinal and the ordinal of the vertex set were 4.  

  (2) The same intrinsic solid geometry of the tetrahedron is 

deduced independently by each examiner.  

  (3) Each maintains that their  count, exhausted the set of 

vertices. 

 The result is quite general, and can be extended to   - hedra in any 

finite n-dimensional space (  = n+1) : both the cardinal, and the ordinal, 

                                         
4  A few of the examiners  did get into arguments with others who, like them, insisted that 

their labeling method was the correct one.  
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of the n-hedron is  ;the associated labeling process exhausts the set of 

vertices; the object has an unambiguous internal geometric structure.   

  This situation changes dramatically when we move to  the 

countably infinite Hilbert Space, H .  The object under examination, 

which we call the -hedron , or has K0 vertices -  meaning that, 

unlike the situation in finite n-space, its’ vertices can be put into 1-1 

correspondence with the axes of the reference frame. This  observation 

leads to a chain of  unforeseen  consequences. 

 Once again, each examiner in turn disappears with  into his 

isolation cell for an indefinite period of time , studies it thoroughly  and 

writes his report. Now agreement can now be maintained on only some  

of the previous  conclusions : 

 (1) Each examiner counted the same number of vertices. 

 (2) The geometry appears to be the same when developed by each 

examiner. However,  

 (2) There exists no way of telling whether even one   of them  

exhausted the full set of vertices!  

 It is possible, for example, that the vertices counted by  Examiner I 

were  all   different from those counted by  Examiner II. The causes of  

this are non-trivial:  each time an examiner  moves from one vertex to the 

next, he must make an arbitrary leap into a  new dimension. Since the 

number of dimensions is  ( countably ) infinite, there is no way  

of showing how the path of one examiner differs from the path of any  

other. 

 We go over the ground in a slightly different fashion, with only  

two  independent examiners, X and Y. The project manager sees  both of 

them at work, but  they cannot always see one another. X labels the 
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vertices of his   - hedron with the letters U1 ,U2 , U3 ,...... When X has 

finished, he hands it to Y . Y goes back to his cell and,  using  a method 

identical to that used by X   , labels the vertices W1 , W2  , W3 , ...... 

 The project manager, who sees everything, realizes that, purely by 

accident,  they happened to have worked in such a fashion that,  for all k, 

Wk = V2k . Although X and Y  are convinced  they’ve examined the  same 

object, Y’s  - hedron is properly contained within X’s.  

  Under the guidance of the manager, they count vertices together, 

giving a new series   V1 ,V2 , V3 .... Satisfied with their labors they 

prepare to go home, but the manager stops them at the door. He intends 

to show them that, no matter how carefully the count is done, it is 

necessarily incomplete.  

 

Parametrizing the -hedron   

 Within a predetermined  Hilbert Space reference frame, the - 

hedron can be built from the ground up, One starts with an equilateral 

triangle in 2-space, then  adds faces and hyperfaces. Let Tn  be  an n-

space  -hedron with edges of length “1” . Embed Tn in a fixed n+1-space 

, locate its centroid and  erect an altitude hn+1 from this point. hn+1  can 

be  extended to a  point Vn+1 which  is at a distance of “1“ from all the 

other vertices of Tn . Working in this fashion we  construct a sequence of 

vertices: 
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0V = (0,0, 0, 0,........ .......)

V1 = (1, 0, 0,0,...... ...........)

V2 = (1 2, 3 / 2,0,0, .......)

V3 = (1 / 2, 3 6, 2 3,0,0, ...)

.... ................ ................ ............

Vn = ( n
2x , n

3x , n
4x ,..... .., n

n+1x ,0, 0,0..)

 

  

This construction has the following  properties:  

 (i) For n> 2 , the first n-2 terms of Vn are identical to the first n-2  

terms  of Vn-1. 

 (ii) For all i ≠ j, the distance | Vi - Vj| = 1 

 (iii) The length |Vi|= 1 for all i ≠0  

 (iv) The sequence   { n
nx }    converges to 1/√2 

Let  nu = vn -(0,0,0,... n
nx ) = ( n

1x , n
2x , n

n-1x ,0,0,0, ...)  .  This set of 

vectors converges to a  limit vector,  V= (1/2,√3/6, 1/√24,..........) 

 

 Vhas the following properties: 

 (a) |V | =  1/2 

 (b) |Vj -  V | = 1/2 , for all finite j  

 (c)  V is the only point in this Hilbert Space with the above  

properties. One might be tempted to conclude from this that our  - 

hedron is  complete:  V is the only possible candidate for another- 

hedron  vertex, and its’ length is half what it needs to be. .  

 However :  let $ designate the shift operator. It moves the vertex 

q= (p1, p2, p3,.....) in H to the point $q= (0, p1, p2, p3,....). Under the of $, 
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the - hedron vertices Vj are moved to Vj’ = ( 0, Vj ). In particular,  

the vertex V0 remains fixed.  $ therefore acts like a rotation on    , 

transforming it into a new -hedron ’ with the same  intrinsic relations. 

Indeed,   and ’ are congruent, but    ‘ has a new vertex:  

 V* = (1/√2, V ) ! 

 Where did V* come from? It must have been sitting in   another 

Hilbert Space  H’  embedding  H . When we transform H’  back into   

H via the inverse shift operator, ( which can be interpreted either  as 

the reverse  rotation, or the projection of  H’  onto   H), V* dissapears.  

 We now return to the story of the independent examiners. After  

waiting, ( with infinite patience ) ,  for them to finish, the project 

manager points out  that if they had rotated   a little bit, they would 

have discovered V*.  Everyone goes back to the laboratory, sandwiches 

V* in somewhere, and begin relabeling. But of  course there is no 

guarantee that we will not  neglect other vertices  V**, V***, and so forth, 

including some of those from the previous counts.  

 

Principle of Relativity for Euclidean  K0-Space  

( Hilbert  Space ) :  

 “ The Hilbert space   H  is formally indistinguishable from any of 

its infinite  dimensional subspaces. It is intrinsically impossible to devise 

a test for detecting  any feature of a Hilbert space that cannot also be 

found in any one of its infinite-dimensional sub-spaces. In particular, it is 

impossible to determine if the space  H  is or is not a subspace of some 

larger Hilbert space : an arbitrary leap can always be made into a new 

dimension. “  
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 Corollary : The expression    H  ( All of Hilbert Space)  is meta-

geometric  ;  it is not  logically well-formed in the language of geometry  

 Corollary ( Not news ) : In the absence of a pre-determined 

reference frame, there  exists no complete orthonormal basis for H. 

Letting Fp stand for the collection of all periodic functions  f : R ---> R, 

then an orthonormal basis for a representation space   can be considered 

complete only relative to that sub region of Fp to which it has been 

Taylored ( sic!) . For  example, the Fourier algebra of functions in  L2 

[] has as its basis the collection of functions B = { cosnx, sinnx} . B is 

included in the class L2 [] of all functions represented by the 

basis B* =  { cosnx/2, sinnx/2 } 

 The vertex set of the - hedron will be assigned the cardinality 

, the first weakly infinite cardinal.  The cardinality of the power set of 

a  hedron,   , is thus the number of distinguishable  n-simplexes. This 

is clearly k0 . We have produced a geometric model  for weak cardinal 

arithmetic.  

Defining models for   ,...... 

  This section is only heuristic:    

 Let U be the set { 0.1} , V the singleton set {0}  and W the  singleton 

set  {  } . Let be   a 1-to-1 correspondence from V to W . 5  

 The power set of U is  P(U) = ( x1 , x2 , x3 , x4 ) , where x1=  , x2= {0}  

, x3 = {1} , x4 = {0,1} . The Boolean algebra of union, intersection and 

complement induces a natural lattice structure over P (U) , which we  

designate M. The corresponding lattices on V and W can be designated A 

and B  .  

                                         
5 Who says that mathematicians have no sense of humor!  
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 The correspondence   induces a lattice-isomorphism between   A 

and B   . We wish to extend andto mappings  

WU

BM





:ˆ

:ˆ

ˆ,ˆ









 These mappings are extensions of and  .All elements of M  

which are also elements in A  are sent into their corresponding element 

in B . However, elements which are in M   but not in A  are sent to the 

null set ,  . The mapping ˆ r  therefore induces by back construction the 

mapping  ˆ z   , which sends the element of U which is also in V into the 

element “ 0 “ , and the element of U which is not in V into an abstract 

entity which we shall write as “ * “ .   * is nothing more than a formal 

symbol with the property that {*} = .  *   is perhaps the “ content  of the 

null set” . Likewise , the null set can be interpreted as the “power set” of 

*, which therefore functions as a kind of ‘pre-set’ . Then *  may be 

defined “implicitly” by means of the diagram:   
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  Let  = ( *,*,*,......,*,......) countably many times.  has the same 

relationship to that  has to  K0  . The following postulate seems 

reasonable : Sets consisting of finitely many copies of  *   are identical to 

the null set  .   

 Thus  = (*)  = ( *,* ) = (*,*,* ) = .... Under this assumption we can 
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conclude that the power set P ( ) = {  } . The cardinal of 

this set is  . One may, in similar fashion, construct a series of weakly 

infinite cardinals with the formal property that     n-1s = ns2   .  

 All of this might be interpreted as so much ‘symbol mysticism’ , 

which in some sense it is. It may also be understood as a legitimate 

extension of Zermelo-Fraenkel  set theory, consistent with the axioms, 

representing an original solution to the antinomy of actual versus 

potential infinity .The assumption that the “infinite” somehow springs 

directly   out of the  “finite “ can easily be dispensed with . The 

countable sets whose elements and equicardinal sub-sets become 

distinguishable only when placed within a “box” or appropriate 

reference frame, provide the essential counter-example.   

 

Families of Orthonormal Functions  

 Let T =  { cosnx, sinnx } be the basis of some Hilbert Space  H . Let  

T*  be any proper countable  subclass of T. By the  Principle of Relativity  

for Hilbert Spaces  , the space spanned by T is internally 

indistinguishable  from that spanned by  T*. This sets up a natural 

isometry between the respective  functional spaces L2 (T) and   L2 (T*) .  

 In particular, let  T* = T2  be the collection of functions  

 { cos2nx, sin2nx } , with L2 (T2 ) as the corresponding function space.  

There are two ways of  interpreting the relationship between  L2 (T) and   

L2 (T2 )  :   

 (i) One can say that  the length of the periods of the functions of  

 L2 (T2)  are half those of  L2 (T)   ;  

 (ii)  One can  say that the functions of L2 (T)   are the same as those 

of   L2 (T2 )  , relative to a different orthonormal basis. 
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  By the first interpretation, we stay inside the original Hilbert  

space and interpret L2 (T2 )   as  with the sub-space of functions of 

period   . By the second interpretation we develop two kinds of Fourier 

expansion for the functions of L2 (T2 )  , over the bases T and T2 

respectively.  

 This suggests a more satisfactory way of defining the L2 norm: 

 One usually writes  

< f ,g >=
1

p
( fgdx

0
2p

ò ) 

 We suggest the  generalization :  

< f ,g >= Lim
L®¥

2

L
( fgdx

0
L
ò ) 

 Observe that  T  is unaltered by this new definition. At the same  

time, the general class of summable functions is now enlarged to include 

all  periodic and almost periodic functions of a finite number of 

independent, non-commensurable periods. It is then possible to discuss 

the rotations of  the -hedron independent of all reference frames.  






 Returning to the table on page 20,  we can express  the coordinates 

of the nth sigmahedral vertex as     

Vn = ( t1 , t2 , ........, tn-2 , qn , pn , 0 ,0 , 0 , ........)   

The tj  ’s represent  the growing  sequence of fixed terms, while qn and 

pn are unique to Vn . By induction one may show that, for all k > 2:    



#27... 

 

tk =

2( j
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1
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qk = k-1p

k
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2t

1
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  In line with the previous discussion, the application of the shift 

operator $ produces another  -hedron including the new vertex 

V* = (1/√2, V ) . 

 In  L2 (T) , shifting all the coefficients  forward eliminates the 

constant term.  The set of functions G associated to the vertexes of the 

shifted  -hedron in Hilbert Space is therefore:  
g1(x) = sin x

g2 = sin x 2 + 3 cosx 2

g3 = sin x 2 + 3 cosx 6 + 2sin 2x 3

.... ................ ................ .......

gw = sin x 2 + 3 cosx 6 + sin 2x 24 +....

 

 

 With the addition of a constant term, 1/√2 , to g, the forward 

shift has created a  new  orthonormal family G*, with the additional 

member,  

g* = 1/√2 +g  

 G* can in turn be interpreted as an orthonormal basis for the 
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Hilbert Space H* : the trigonometric functions  {cosnx, sinnx} can all be 

expressed as linear combinations of them. One could  therefore build a 

new - hedron   on  the new basis. The result is a collection of functions  

 =  { j (x)} , with a new limit function, *(x) = 1/√2 +(x)   outside the 

space spanned by the g’s. 

 Unless restrictions are placed on the rotations in  H  , which is the 

same as saying that one begins with a predetermined reference frame, 

one cannot “count” the vertices of in the usual fashion. Yet whenever a 

frame is added, its cardinal comes out to be   . We therefore assign the 

‘pre-countable’ transfinite of   to  .  


 The question remains whether the weak cardinal of the limit mixet  

A = (a,a,a,a,…) is really the same as that of the vertex collection of the  

-hedron. We argue that it is:  A   is assumed to be presentable, 

meaning that there exists, in theory, a reference frame, box, or some other 

kind of presentation with respect to which all of its elements become 

distinguishable. That it shares this property with the vertex set of the 

-hedron is our motivation for assigning it the same weakly infinite 

cardinal,   .   
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